مطالعه دینامیک جریان ضربانی خون در مجاری تَنگ‌شده

سید محمد رضا مدرس رضوی، سید حسین سیدی و پیمان باشی‌شهاپی

چکیده: در این مقاله جریان ضربانی خون در مجاری تَنگ‌شده با استفاده از مدل سیال غیرپوستی تابع نمایی (Power law) تابع است. گفتگوی واریانس شدت (WSS) با استفاده از معادله فیزیکی و تغییرات بیان شد. نتایج دقیقه سه‌گانه می‌دهد که برای عدد واریانس ۱۲، تفاوت اساسی در میان جریان‌ها ناشی از ایجاد شدت دو گردبند نزدیک به هم در پشت گفتگوی است. قابل مشاهده است. با استفاده از محتوای صفحاتی تشخیصی دیواره (WSS) اشتغال‌گیری‌های منجر به تشکیل گردبند اولیه و گردبند دوم (هر روز/۱۲) می‌شود به خوبی نمایش داده می‌شود. همچنین زمان تشکیل گردبند اولیه با بررسی خطوط هم شعر برشی رفتن از روی منحنی حای صفحه‌ای قابل رویت است. این زمان با افزایش عدد واریانس به تأخیر می‌افتند. این تأخیر در تشکیل گردبند اولیه به صورت کوچک‌تر شدن آن با افزایش عدد واریانس بای زمان‌نامگ تنش در نتایج مربوط به خطوط جریان نمایان می‌شود.

واژه‌های کلیدی: جریان ضربانی، سیال غیرپوستی، عدد واریانس، توقیف محوری، تنش برشی دیواره

۱. مقدمه

آرزوهای دست‌یافتن به چگونگی رفتار جریان خون در سیستم قلبی و عروقی انسان، تحقیقات گسترده و فراوانی‌ای در این زمینه بر انجام‌شده است، امروزه تبادل این جریان به وسیله تسمید به سیاری و شتاب‌گذاری باعث رونق و پیشرفت این زمینه می‌گردد. تحقیقاتی که به این محور نوجوانی دارند، به دنبال انجام این تحقیقات می‌باشند که بررسی جریان خون در عروق تَنگ‌شده در محیط‌هایی که نسبت به حجم عوارض داشته باشند است. این موضوع از این جهت اهمیت است که جریان خون در عروق و مجاری تَنگ‌شده نشته را در توسعه و پیشرفت اینساد، افزایش دهد.

۲. عروق دارد (۱-۲).

در اثر گفتگوی واریانس (اسداد) که در رگ به وجود می‌آید، جریان طبیعی خون دچار اختلال می‌شود. این اختلال در جریان طبیعی خون، نشته ممکن را در بیماری‌های قلبی- عروقی باید مکنید.

از این نظر به‌طور معنی‌داری در مورد غلظت رنگ‌افزایی و ایجاد صورا گرفتگی نهایی به وجود می‌آید. از این رو، لیزری به فضای قابل منع و بدفتون سه‌نیمی بعد در این زمینه به دست یافته است. این رو، شیب‌سازی و مطالعه جریان در عروق تَنگ‌شده همانند جزو تحقیقات مورد علاقه بشر است.

۳. از لحاظ مکانیکی، خون را با بود سیالی در نظر گرفته که از تعلیق او از چندنگبوته‌ی مختلف و می‌تواند به نام‌های شکل‌پذیر شده است. گلفتگی آن مکانیکی از لحاظ متغیری است که اثر آنها در شرایط عمومی به‌طور کلی در چنین محیطی اختلاف در خون ایجاد می‌کند. به طور کلی فرض می‌شود که اثر آنها در شرایط جریان خون بر اثر سایر سیال‌های موجود کالبد باشد. اگرچه می‌آید که سیال‌های در آن معلق هستند، پلاسا وسیعی می‌باشد که خود از ۹۰ آب تشکیل شده است ولی عموما خون به عنوان یک سیال غیرپوستی در نظر گرفته می‌شود.

۴. ورمسنری کِلیدی: جریان ضربانی، سیال غیرپوستی، عدد واریانس، توقیف محوری، تنش برشی دیواره

۵. این مقاله در تاریخ ۲۶/۸/۲۰۱۹ دریافت و در تاریخ ۸۳/۸/۲۰ به تصویب نهایی رسیده است.

دکتر سید محمد رضا مدرس رضوی، استاد گروه مکانیک دانشکده مهندسی، m-razavi@ferdowsi.um.ac.ir
دکتر سید حسین سیدی، دانشیار دانشکده مهندسی مواد، دانشگاه علم و صنعت ایران، sedyedin@iust.ac.ir
پیمان باشی‌شهاپی، دانشجو دکتری و عضو هیات علمی دانشگاه آزاد اسلامی
wshahabi@yahoo.com

واحد مشهد.

۱. Womersley number
اين كارا بفرج حریان متقارن محوری و در نظر گرفتن رفرن سیال غیربیولوژی انجام مي‌شود.

2. تعریف مسائل و مشخصات مدل فیزیکی

اطلاعات مربوط به هدفه گرفتگی و جریان سیالی موجود عیار و روزی به نحوی در شکل 1 نشان داده است. همانطور که در شکل 1 افزایش می‌شود، برونیل گرفتگی حالت منظمی ندارد. هنگام گرفتگی معمولاً با یک پروپیل نمایی با سینوسی تقریب زده می‌شود و در Young and Forrester بر اساس یک آرامشگاهکه که توسط مدل معادلات مدار در سال 1992 اخوان شده تنظیم گردید. که توان قابل ملاحظه‌ای بین جریان حرارت جریان سیالی مانند آپ در یک مجاری نگه داشته و وجود درد نیازمند می‌توان از این رفتار غیربیولوژی خون در دندان نیست.

\[R(z) = \frac{\eta(z)}{\eta_0} = \begin{cases} \frac{1}{2} - \frac{\delta}{2} \cos \left(\frac{\pi z}{\delta} \right) & \text{if } |z| \leq \delta \\ 1 & \text{if } |z| > \delta \end{cases} \] (1)

در رابطه فوق، شعاع نهایی، به عنوان عکس بزرگ‌ترین شعاع لوله از طبیعت غیربیولوژی پیموده می‌شود. در ترتیب 1 از طبقه‌بندی شدن هاله نسبت سطح‌بندی گرفتگی که مカラه‌ی این سطح‌بندی در قطع لوله می‌شود. در شکل 1 افزایش می‌شود و در Young and Forrester بر اساس یک آرامشگاهکه که توسط مدل معادلات مدار در سال 1992 اخوان شده تنظیم گردید. که توان قابل ملاحظه‌ای بین جریان حرارت جریان سیالی مانند آپ در یک مجاری نگه داشته و وجود درد نیازمند می‌توان از این رفتار غیربیولوژی خون در دندان نیست.

\[Re = Re_{mean} + Re_{rms} \sin \left(\frac{2\pi f}{T} \right) \] (2)

1. Shear strain rate
2. Wall shear stress

***زیرا ساختار استیک و فرم‌های پیوسته‌ی گاردیاً زن Lentz خوان در این زمینه انجام است به عنوان محدودیت‌های کابینه‌ی گوارش و کارگاه‌های ردیابی با اندازه‌گیری با اندازه‌گیری نرسیده به انجام...

***کارا بفرج حریان متقارن محوری و در نظر گرفتن رفرن سیال غیربیولوژی انجام می‌شود. همان‌طور که در شکل 1 نشان داده است. همان‌طور که در شکل 1 افزایش می‌شود، برونیل گرفتگی حالت منظمی ندارد. هنگام گرفتگی معمولاً با یک پروپیل نمایی با سینوسی تقریب زده می‌شود و در Young and Forrester بر اساس یک آرامشگاهکه که توسط مدل معادلات مدار در سال 1992 اخوان شده تنظیم گردید. که توان قابل ملاحظه‌ای بین جریان حرارت جریان سیالی مانند آپ در یک مجاری نگه داشته و وجود درد نیازمند می‌توان از این رفتار غیربیولوژی خون در دندان نیست.

\[R(z) = \frac{\eta(z)}{\eta_0} = \begin{cases} \frac{1}{2} - \frac{\delta}{2} \cos \left(\frac{\pi z}{\delta} \right) & \text{if } |z| \leq \delta \\ 1 & \text{if } |z| > \delta \end{cases} \] (1)

در رابطه فوق، شعاع نهایی، به عنوان عکس بزرگ‌ترین شعاع لوله از طبیعت غیربیولوژی پیموده می‌شود. در ترتیب 1 از طبقه‌بندی شدن هاله نسبت سطح‌بندی گرفتگی که مカラه‌ی این سطح‌بندی در قطع لوله می‌شود. در شکل 1 افزایش می‌شود و در Young and Forrester بر اساس یک آرامشگاهکه که توسط مدل معادلات مدار در سال 1992 اخوان شده تنظیم گردید. که توان قابل ملاحظه‌ای بین جریان حرارت جریان سیالی مانند آپ در یک مجاری نگه داشته و وجود درد نیازمند می‌توان از این رفتار غیربیولوژی خون در دندان نیست.

\[Re = Re_{mean} + Re_{rms} \sin \left(\frac{2\pi f}{T} \right) \] (2)

1. Shear strain rate
2. Wall shear stress

***زیرا ساختار استیک و فرم‌های پیوسته‌ی گاردیاً زن Lentz خوان در این زمینه انجام است به عنوان محدودیت‌های کابینه‌ی گوارش و کارگاه‌های ردیابی با اندازه‌گیری با اندازه‌گیری نرسیده به انجام...
\[W_0 = r_0 \left(\frac{2\pi}{VT} \right)^{\frac{3}{2}} \] (4)

در رابطه فوق، \(Wo \) لزجت سیماناتیکی است که به اساس لزجت نیوتنی مبتدی به حد بالایی گرندن برای محاسبه می‌شود. مقادیر مورد استفاده در رابطه فوق برای حل‌های ارائه‌شده، در جدول 1 ارائه شده‌اند.

جدول 1: مشخصه‌های فیزیکی مدل در نظر گرفته شده

<table>
<thead>
<tr>
<th>مشخصه‌های فیزیکی</th>
<th>مشخصه‌های هندسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>گرفتگی (\gamma)</td>
<td>0/5</td>
</tr>
<tr>
<td>نصف طول گرفتگی (z_0)</td>
<td>2</td>
</tr>
</tbody>
</table>

مشخصه‌های چرخان برای مدل تابع نامایی (GGS)

<table>
<thead>
<tr>
<th>مشخصه‌های چرخان برای مدل تابع نامایی (GGS)</th>
<th>عدد و مرسی</th>
<th>زمانی هر تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Re_{clos})</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>(Re_{clos})</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

تعداد گام‌هایی

<table>
<thead>
<tr>
<th>عدد و مرسی</th>
<th>تعداد تکرار حل شده برای رسیدن به حل نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

\[Re = \frac{\nu_D D}{\mu_0} \] (5)

پارامتر نوسان با عدد و مرسی که باید کننده نسبت تامپریسی که گذرا به چرخان برای مدل تابع نامایی (GGS) است، به صورت ذیل تعیین می‌شود:

\[Re = \frac{\bar{UD}}{\mu_0} \] (3)
\[WSS(z,t) = \frac{r_s}{\rho U^2} \]

(8)

\[\text{Boundary fitted coordinate} \]

\[V_v = 0 \]

\[\rho \left(\frac{\partial V}{\partial t} + (V \nabla)V \right) = -\nabla p + \nabla \tau \]

\[\tau = \eta \nabla V \]

(9)

\[\text{Turbulent dynamics} \]

3.1 Turbulent dynamics

3.2 Turbulent Brinkman equation

\[\text{Solving for } \eta \text{ and } \kappa \text{ from the governing equations} \]

4. Conclusion

References
مطالعه دینامیک جریان ضربانی خون در مجاری تنگشده

آمده است و تکرار محاسبات با مشنندی طرفین تایب‌بل
ملاحظاتی بر محاسبات و نتایج هنالی داشت و عدم استگنی نتایج مشنندی (mesh-independency)
به مشنندی. بسببی نبوده و
عوض میزان جریان از مرز لوله به ستت دیواره ریز می‌شود. با
بوقات شب‌نامی سرعت را در زدیکی دیواره به خوبی محاسبه کرد.
لازم به توضیح است که شب‌نامی سرعت روی دیواره اثر مستقیمی بر محاسبه نش برسد. برای جزئیات بیشتر به
مراجع (11) مراجعه شود.

4. بررسی صحت نتایج

برای اطمینان از صحت گزارش کد توسعه داده شده نتایج اوله در
دو حالت جریان دامی و ضربانی به ترتیب با نتایج عدید
Tu and Deville [2]
با توجه به اینکه نتایج آزمایشگاهی مورد نظر برای جریان ضربانی
نیش برای مدل‌های نیوتنی در مدت بود، نتایج این سمت نیش برای
مدل سیال نیوتنی به دست ابتدای است.
در کلیه ارتفاعات شده در این مقاله، در و به ترتیب سرعت
 بعد شده بر اساس سرعت میانگین طبیعی شائع جی. بعد شده بر
اساس شعاع اصلی لوله و طول جی. بعد شده بر
نسبت گرفته شدند:

\[
\alpha^* = a/U \\
\beta^* = r/r_0 \\
\gamma^* = z/D
\]

(الف) \(- 9 \)
(ب) \(- 9 \)
(ج) \(- 9 \)

تغییرات سرعت مرکز لوله (سرعت ماکزیمم) در طول لوله با
گرفتن ۷۵٪ باید مدل‌های نیوتنی و غیرنیوتنی تابع نمایی، در
شکل ۳-الف درسه شده است. گرچه در این شکل بیشترین مقادیر
سرعت مربوط به مدل نیوتنی است ولی مقادیر سرعت در ادامه روند
بازگشت به حال توسعه دانه، برای مدل نیوتنی کمتر از مدل
غیرنیوتنی تابع نمایی خواهد شد به طوریکه بازگشت به حال
توسعه فاکتور مدل نیوتنی در فاصله کمتری از مرکز گرفتگی در
مقااسبه با مدل غیرنیوتنی تابع نمایی صورت می‌گیرد.

بدین ترتیب انتظار داریم طول محصوله در نهایت گراف (گردابه) تشکیل
شده در پیش گرفتگی برای مدل غیرنیوتنی ناب‌الغیری طول‌تر از
مدل نیوتنی باشد. این بخشی باید با استفاده از شکل‌های ۳-ب و ۳-
ج، به ترتیب برای خطوط جریان مدل نیوتنی و غیرنیوتنی تابع
نمازی تابید. می‌تواند

همانطور که در این دو شکل مشاهده می‌شود گرافه تشکیل شده
برای مدل نیوتنی کوچکتر از مدل غیرنیوتنی تابع نمازی می‌باشد.

4-۱ نتایج جریان دامی

برای تابع گرافی دامی لزج خون در حالی نیوتنی معادل
۱.۰×۱۰۴ با توجه به مرزگیری می‌شود و مقادیر چگالی آن
۱۰۲ و به تابع متمرکز شده است [۳] و ۱۰۲ و [۴] همچنین ضرب‌تکان
برای خون در مدل با تابع نمایی، ۰۰.۸۰ از
ن در نظر گرفته می‌شود. برای
نبرد رودولف، با نظر گرفتن لزج نیوتنی برای هر دو حالت
نیوتنی و غیرنیوتنی معادل ۶۷ درصد گرفته شده است. پرولی
گرفته در نظر گرفته شده مشابه راهبرد (۱)، با فرض ۱=۱
(مقادیر وارد برای برای تصویر گرفتگی) می‌باشد.

در شکل ۲ پروفیل‌های سرعت برای مدل نیوتنی و غیرنیوتنی تابع
نمازی در حالی گرفتگی ۷۵٪ در مقایسه با مقدار محاسبه شده
توسط [۲] Tu and Deville رسم شده. پروفیل‌های سرعت به
دست امده برای هر دو مدل نیوتنی و غیرنیوتنی تابع نمازی تطابق
خوبی با نتایج این تحقیق دارد.
زمان نیز با (زمان یک تکرار ضربان) بی بعدهمانده. در شکل 5-α
اف سرعت مركز لوله (سرعت ماکزیموم) در محصول‌های وردی، پیش از گرفته‌گر، برای یک تکرار ضربان در مقابل زمان رسم شده است و
[7] Ojha et al. [8] تجارت به دست آمده به تجربه کار آزمایشگاهی
حقیقت عددهای مقدار به دست آمده، به غیر از مقدار نزدیک‌تر باقلای سرعت در یک ضربان،
تکرار خوبی با تکرار آزمایشگاهی دارد.

شکل 5-ب موقع‌های زمانی در نظر گرفته شده در طول یک ضربان برای رسم پروفیل‌های سرعت را نشان می‌دهد. لازم به توضیح
است که همان موقع‌های زمانی مورد استفاده در شکل 5-α با
موقع‌های زمانی در نظر گرفته شده در شکل 1-α متفاوت
می‌باشد. سه موقع‌های زمانی شکل 5-α به ترتیب
جران، کمربند و چهار
موفقیت زمانی شکل 1-α در تابع بالا 5- α و
11 استفاده شدند. در شکل‌های 6-α و 6-β پروفیل‌های سرعت در دو
فاصله متفاوت از گرفته‌گر برای سه زمان مختلف رسم شدند.

شکل 3-α تغییرات سرعت و خطوط مشکی جراین برای گرفته‌گر
ب) (الف) مقایسه تغییرات سرعت ماکزیموم (سرعت در مركز
لوله) در طول لوله برای سیال بینتی و مدل غیر بینتی تابع نمایی
و (ب) خطوط جراین برای مدل غیر بینتی تابع نمایی

توضیحات ونتیگری کاملتر در این مورد (شامل تابع مربوط به
گرفته‌گر و پروفیل‌های سرعت برای فواصل مختلف از مرکز
گرفته‌گر) در مرجع [14] و 11 ارائه شده است.

شکل 4-α نتایج جراین ضربانی
نتایج مورد به دست آمده قسمت برای گرفته‌گر 2/45 درجه بینتی و
لوله‌ای به قطر 50 mm و میان برای گرفته‌گر (مشابه هندسه در
نظر گرفته شده در مرحله 7) از طرف پروفیل دوره‌تکرار می‌باشد
شکل 4) جراین ضربانی به واژه به رابطه سیستمی (مشابه
رابطه 3) قابل دسترسی بوده و رابطه‌ای با تغییرات
دائم توان 0.49-0.7 منظور شده است. عدد ورشلی با پایه توان
0.49 در نظر گرفته می‌شود. به این ترتیب عدد ربع جراین در هر
زمان با رابطه (1) تغییر می‌کند. در این رابطه (1) عدد
دست نواهد دامنه 0.5،/5

شکل 4-β هندسه شماپای گرفته‌گر با پروفیل دوره‌تکرار
لازم به توضیح است که در شکل‌های مربوط به جراین ضربانی
(شکل‌های 5-α و 6) سرعت با سرعت متوسطی گردیده شده ورودی بر
اساس سطح مقطع برای عدد ربع جراین (1) عدد

(Re=0.5) با رابطه (2)
5. بحث و تحلیل نتایج

نتایج مربوط به مطالعه دیمانیک جریانِ پریولفیلی به‌طور شدید
7.25\% با استفاده از مدل رفتار جریانی تابع نمایی شامل خطوط
جریان میدان حل و تغییرات تنظیم شدهی دوباره در این قالب ارائه
می‌شود. مشخصات هندسی و فیزیکی برای نتایج ذیل به تفصیل در
جدول ۱ ذکر شده است.

- ۵-۱ خطوط جریان میدان حل

که اثرات این‌ترسی گذاری کمتری نسبت به دو عدد
ویژگی دیگر (ویژه ۱۳/۵ و ۱/۵ در دارد. خطوط جریان در
چهار زمان متفاوت از شکل ۹ رس شدیدان (محل فاصلگری این
چهار زمان در طول مدت زمان یک تکرار ضریب سیستمی در شکل
۱-۷ نشان داده است. (۹) گردیدن یک بعد از گروگان اجاد
می‌شود در طول مدت زمانی که شتاب مفعول‌نشده (کم‌از تا
T1، رشد مکان (شکل‌های ۹-۷ و ۹-۱۰. علت رشد این گرادی
را می‌توان کاهش شدت جریان تولید شده به واسطه گروگان
پیام کرند. در طول مدت زمانی که شتاب مفعول‌نشده است به علت کاهش
شدت جریان، افزایش جنبه سیال کاهش پیدا می‌گردد که این
پدیده باعث افزایش طول گرداب و محصول چرخش به وجود آمد
می‌شود.

- ۵-۲ پریولفیلی سرعت برای دو تقطع در طول لوله.

برای گرفتگی ۴۵/۵ در زمان ۷۴/۵۱ توسط Ojha et al. با نتایج [7] یا T1 = 0.174 و z* = 2.5
(الف): پریولفیلی سرعت در z* = 4/۵ و (ب): پریولفیلی سرعت در z* = 4/۳
برای گرفتگی ۶۵/۴۵ در زمان ۷۴/۵۱ توسط Ojha et al. با نتایج [7] یا T1 = 0.174 و z* = 4.3
(الف): پریولفیلی سرعت در z* = 4/۵ و (ب): پریولفیلی سرعت در z* = 4/۳
در زمان T_3 با صفر شدن جریان و رودی و متعاقب آن فروکش کردن جت جریان خروجی از گرفتگی، میدان جریان تقیی با دو منطقه که شامل محدوده پیش از گرفتگی و پس از گرفتگی است، تقسیم می‌شود (شکل 9-ج). در این حالت با وجود اینکه جریان ورودی صفر است ولی اینریز موجود باعث جریان سیال می‌شود با شتاب گرفتگی جریان در محدوده یک چهارم انتهایی ضریب z^* حاصل T_3 و افراش جت خروجی از گلگاه میدان جریان یک گردابه جدید تنگی دیواره پشتی گرفتگی تشکیل می‌شود. در شکل 10 نیز خطوط جریان در میدان حل برای $W_o = \sqrt{5}$ نمایش داده شده‌اند.

منشأهای میدان جریان در این عددهای مرسی (W $= \sqrt{15}$) تقریبا مشابه میدان جریان برای $W_o = \sqrt{4}$ است، با این تفاوت که اینریز جریان تولید شده به واسطه گرفتگی برای این حالت بیشتر از حالت قبل $W_o = \sqrt{5}$ است. (شکل 10)

شکل 8: پروپایهای سرعت محرک با رای دو نقطه در طول لوله. برای گرفتگی $W_o = \sqrt{15}$ در زمان $T_3 = T_2$ و مقایسه با نتایج (7).

شکل 9: خطوط جریان برای جریان ضریبی و سیال گیریبینی تابع $W_o = \sqrt{4}$ و $T_3 = T_2$ در نقطه منطقه شتاب (ب): T_3 در نقطه جریان صفر و (ب): T_3 در نقطه شتاب مشتاق

1 Distal face
مطالعه دینامیک جریان ضربانی خون در مجاری انسانی

شکل 10. خطوط جریان برای جریان ضربانی و سیال غیریونیونی تابع نمایی

ماکزیمم جریان، (ب): در منطقه شتاب منفی، (ج): در نقطه جریان صفر و (د): در نقطه شتاب مثبت

شکل 11. خطوط جریان برای جریان ضربانی و سیال غیریونیونی تابع نمایی در

ماکزیمم جریان، (ب): در منطقه شتاب منفی، (ج): در نقطه جریان صفر و (د): در منطقه شتاب مثبت

به واسطه بیشتر بودن اثرات این تری،

گردابهای تشکیل شده در پشت گرفتگی برای دو زمان

نسبت به دو زمان قبل (Wo = 5/11) و بعد (Wo = 10) (شکل 10) و 10-ب. همچنین در زمان Ti با شتاب گی ریان از نقطه

جریان صفر (Ti)، محدوده چرخش در پشت گرفتگی تشکیل

شده بر خلاف زمان Ti برای 4 و 5 و نیز خطوط جریان

خمیده در پایین دست جریان نشان می‌دهد که محدوده چرخش

در زمان‌های قبل و وجود داشته است (شکل 9-ب). در زمان Ti نیز محدوده چرخش

مجددا می‌بیند به دو منطقه جداشکته که یکی در محدوده قبل

از گرفتگی و دیکری در محدوده بعد از گرفتگی به وجود می‌آید.

تشکیل می‌شود (شکل 10). در این زمان نیز محدوده چرخش در

پشت گرفتگی نسبت به زمان مشابه برای 4 Wo کوچک‌تر شده

است. هنگامی که محدوده چرخش اجداد

شده در میدان جریان برای دو عضو ورسی 4 و 5 بده

جربیان در پشت گرداشته اولیه افزایش می‌یابد. همان‌گونه که در شکل 11-ب مشاهده می‌شود، این گرداشته در زمان T_1 در فاصله ۵ برابر قطر و در نتیجه وقوع تغییرات شدید در این منطقه شروع می‌شود. بررسی میدان جربیان در طول یک دوره تغییرات ثابت می‌شود که به‌طور اولیه مولفه‌های سرعت قیمتی در پایین مدت گرداشته باعث شکل‌گیری گرداشته نیز $Wo = 7/5$ و در گرداشته تغییرات شدید با مقدار $Wo = 4$ مشاهده می‌شود. به‌طور کلی، در این شرایط، در نتیجه مولفه‌های سرعت قیمتی در پایین مدت گرداشته باعث شکل‌گیری گرداشته نیز $Wo = 7/5$ و در گرداشته تغییرات شدید با مقدار $Wo = 4$ مشاهده می‌شود.

(WSS) تغییرات شکل بر اساس دیواره

منحنی‌های صحناها تشکیل برای دیواره در مقابل زمان و مکان (در انتقال طول) با یک سه سه و جزئی در شکل 12 رسم شده‌اند. همان‌گونه که در قسمت قبل در نتیجه خطوط جربیان میدان‌های حل برای اعداد وریسی مختلف نیز اشاره شد، بعضی از مشخصه‌های میدان جربیان در این منحنی‌های صحناها پیوست می‌شوند.

12. داشتهای نش ترش بری می‌گردد برحسب زمان و مکان برای جربیان ضریبی خون و مدل سالی غیرزیستی نتایج اعداد وریسی مختلف: $Wo = 7/5$، $Wo = 4$، $Wo = 7/5$ و $Wo = 12.5$.
مطالعه دینامیک جریان ضریبی خون در مجاري تنگشده

نشر در مجله فیزیولوژی علوم حیاتی، فروردین 1389، شماره 2

چکر و قدراطی

نویسندگان مقاله از اهمیتی ها و مکمل‌های افتخارات می‌دانند که می‌توانند دانش‌مندان را به‌خوبی در مورد این مسئله بیش‌تر آشنا کنند.

مراجع

