بررسی اثر تقویت کننده‌ها بر بار کمانش پوسته استوانه‌ای کامپوزیتی

بروندوف قاسمی توتاشیمی و علی اصغر جعفری

چکیده: هدف از ارائه این مقاله، بررسی اثر پارامترهای مختلف تقویت کننده‌ها بر روی بار کمانش پوسته استوانه‌ای کامپوزیتی می‌باشد. ماده کامپوزیت مورد استفاده لمینت و روش بی‌کامپوزیت مورد استفاده لمینت و روش به دست آورده در مدل‌سازی پوسته بین دو سطح جعبه‌ای انجام شد. بررسی نشان داد که برای بهینه‌سازی پوسته بین باید مدل‌سازی انجام شود و بر اساس نتایج، بهترین نتایج کننده‌هایی شناخته شد که به استوانه‌ای کامپوزیت موجب بهبود بار کمانش می‌شود.

واژه های کلیدی: پوسته کامپوزیتی، تقویت کننده، بار کمانش، تقویت برشی مرتبه اویل، بهینه سازی

1. مقدمه

سازه‌های پوسته استوانه‌ای از یکی از مهم‌ترین و پرکاربرد‌ترین سازه‌های مورد استفاده در صنایع مختلف محیط زیست، صنایع تولید محصولات شناخته شده از این سازه‌ها استفاده می‌شود. همه این سازه‌ها به صورت‌های مختلف نیاز به پوشش‌هایی پیش‌بینیک می‌شود. این سازه‌ها به صورت زیر گروه‌بندی می‌شوند:

- این مقاله در تاریخ ۱۳۱۹/۱۰/۵ دریافت و در تاریخ ۱۳۱۹/۱۲/۲۸ به تصویب نهایی رسیده است.

- برچسب کلمات کلیدی: دانشجوی کارشناسی ارشد، دانشکده مکانیک، دانشگاه کراچی، broumand2003@gmail.com، مهندس مکانیک، دانشگاه کراچی، jafari@uast.ac.ir.

بررسی اثر تقویت کننده‌ها بر بار کمانش پوسته استوانه‌ای کامپوزیتی

به دست آمده است، در قسمت بعدی اثر پارامترهای مختلف بر روی بار کمانش پوسته استوانه‌ای مربوط به اورده شده است.

همچنین به منظور بررسی هم‌زمان اثر پارامترهای مختلف، هر کدام از این پارامترها به صورت یک متغیر طراحی در نظر گرفته شده‌اند و حالت بهینه‌ترین طراحی از اعتبارات از الگوریتم‌زئینی به دست آمده است. در پایان تایپ حالت تشریح‌شده است.

2.2. دست آوردن معادلات حاکم بر پوسته استوانه‌ای

تقویت‌شده

شکل (1) پوسته استوانه‌ای تقویت شده را نشان می‌دهد. در این شکل که پوسته‌های لایه‌ای، مشکل از تعداد دالویه‌ای لایه‌ای با پارامترهای طولy، شعاع R و ضخامت h بک دستگاه مختصات (x, ρ, z) بر روی سطح میانی پوسته تاب شده‌است.

در تغییر مکان‌های پوسته در جهات z و ρ به ترتیب با ρ، x و ρ، ρ تغییر می‌یابد.

شکل 1. هندسه پوسته استوانه‌ای تقویت‌شده

تغییر مکان‌های نقطه‌ای از مقطع را می‌توان به وسیله رابطه زیر با تغییر مکان‌های سطح میانی مرتب ساخت:

\[u = u_0(x, \theta, z) + z \psi(x, \theta) \]

\[v = v_0(x, \theta, z) + z \psi_\theta(x, \theta) \]

\[w = w_0(x, \theta) \]

در این رابطه، ماتریس‌های سطحی (A_i0) و (D_i0) سطح دریایی (H_i0) و سطح بریش (D_i0) به صورت زیر تعریف می‌شود:

\[(A_{ij}, B_{ij}, D_{ij}) = \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{b}{z} Q_{ij}(1, z, z^x) \, dz \]

\[(H_{ij}) = k_b \int_{-\frac{b}{2}}^{\frac{b}{2}} Q_{ij}(z) \, dz \]

برای پوسته‌ای که از لایه‌های مختلف ماده ارتوتروپیک تشکیل شده، سفتی‌ها را می‌توان به صورت زیر نوشت:

\[U_e = \frac{1}{2} \int \varepsilon \varepsilon^T \left[S \right] \varepsilon \, Rd\theta dx \]

که [S] ماتریس سفتی بوده و بردار کرنش e به صورت رابطه (2) تعریف می‌شود.

\[\varepsilon = \left\{ \varepsilon_x, \varepsilon_\theta, \varepsilon_z, \gamma_{x\theta}, \gamma_{xz}, \gamma_{\theta z} \right\} \]

در این رابطه:

\[\varepsilon_x = \frac{\partial u_0}{\partial x} + \frac{1}{2} \left(\frac{\partial w_0}{\partial x} \right)^2 + \frac{z}{R} \left(\frac{\partial w_0}{\partial \theta} \right)^2 \]

\[\varepsilon_\theta = \frac{\partial u_0}{\partial \theta} + \frac{z}{R} \left(\frac{\partial w_0}{\partial \theta} \right)^2 + \frac{1}{2R^2} \left(\frac{\partial w_0}{\partial \theta} \right)^2 \]

\[\varepsilon_z = 0 \]

\[\gamma_{x\theta} = \psi_\theta + \frac{1}{R} \left(\frac{\partial u_0}{\partial \theta} \right) \]

\[\gamma_{xz} = \psi_x + \frac{w_0}{\partial x} \]

\[\gamma_{\theta z} = \frac{1}{R} \left(\frac{\partial w_0}{\partial \theta} \right) + z \left(\frac{\partial \psi_\theta}{\partial x} \right) + \frac{z}{R} \left(\frac{\partial \psi_\theta}{\partial \theta} \right) + \frac{1}{R^2} \left(\frac{\partial \psi_\theta}{\partial \theta} \right) \]

\[W = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} & 0 & 0 \\ A_{12} & A_{22} & A_{26} & B_{21} & B_{22} & B_{26} & 0 & 0 \\ A_{16} & A_{26} & A_{66} & B_{61} & B_{62} & B_{66} & 0 & 0 \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} & 0 & 0 \\ B_{12} & B_{22} & B_{26} & D_{21} & D_{22} & D_{26} & 0 & 0 \\ B_{16} & B_{26} & B_{66} & D_{61} & D_{62} & D_{66} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & H_{44} & H_{45} \\ 0 & 0 & 0 & 0 & 0 & 0 & H_{45} & H_{55} \end{bmatrix} \]
در این رابطه، \(U_n, L_n, u_n, v_n \) اثری کردنی پوسته، \(A_n, B_n, a_n, b_n \) اثری کردنی است. پنالسی و نیروهای خارجی (نیروهای محوری، فشار و شار داخی) می‌باشند. برای به دست آوردن اثری پنالسی تقیی کردنی‌های کرید کردنی‌های ریگن و استریکنگ، ابتدا اینکه با سرعت ویژه می‌باشد. به صورت زیر، نوشته و نیروهای خارجی و داخلی به صورت زیر، نوشته می‌باشد:

\[
\begin{align*}
\Pi &= U_x + U_y + U_z + V_x + V_y + V_z, \\
A_n &= \sum_{k=1}^{N_n} \Theta_n^k (h_k - h_{k+1}), \\
B_n &= \frac{1}{2} \sum_{k=1}^{N_n} \Theta_n^k (h_k^2 - h_{k+1}^2), \\
D_n &= \frac{1}{3} \sum_{k=1}^{N_n} \Theta_n^k (h_k^3 - h_{k+1}^3), \\
H_{ij} &= k_0 \sum_{k=1}^{N_n} \Theta_{ij}^k (h_k - h_{k+1})
\end{align*}
\]

(8)

(9)

که \(k \) مقدار سطح میانی پوسته تا سطح خارجی و داخلی

\(\lambda \) ام را نشان می‌دهد (شکل 2).

\[
\begin{bmatrix}
\begin{array}{cccc}
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\end{array}
\end{bmatrix}
\]

(10)

\[
\begin{bmatrix}
\begin{array}{cccc}
\frac{c^2}{s} & \frac{s}{c} & \frac{2c}{s} & 0 \\
\frac{s}{c} & \frac{-s^2}{c} & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & s & 0 \\
\end{array}
\end{bmatrix}
\]

(11)

\[
\begin{bmatrix}
\begin{array}{cccc}
Q_{11} & Q_{12} & 0 & 0 \\
Q_{12} & Q_{22} & 0 & 0 \\
0 & 0 & Q_{14} & 0 \\
0 & 0 & 0 & Q_{55} \\
\end{array}
\end{bmatrix}
\]

(12)

(13)

(14)

(15)

(16)

(17)
بررسی اثر تقویت کننده‌ها بر بردار کمانش پوسته استوانه‌ای کامپوزیتی

تغییر مکانیاتی تقویت کننده‌ها (مثلاً تری اوول - برتن) در جهات z, θ, x به صورت زیر تعیین می‌شوند:

$u_x, u_y, u_z = w_0, v_0, w$ (25)

با تشکیل رابطه (59) به رابطه ماتریسی زیر می‌رسیم:

$$
\begin{bmatrix}
L_{11} & L_{12} & L_{13} & L_{14} & L_{15} \\
L_{21} & L_{22} & L_{23} & L_{24} & L_{25} \\
L_{31} & L_{32} & L_{33} & L_{34} & L_{35} \\
L_{41} & L_{42} & L_{43} & L_{44} & L_{45} \\
L_{51} & L_{52} & L_{53} & L_{54} & L_{55}
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C \\
D \\
E
\end{bmatrix} = 0
$$

(26)

کرنش استرینگرها در جهت محوری برای است و با

$$
\epsilon_{ri} = \frac{\partial u_x}{\partial x} - \frac{z \partial w_0}{\partial \theta} \frac{\partial w_0}{\partial x}
$$

(27)

و کرنش رینگ‌ها در جهت محیطی با عبارت زیر نشان داده می‌شود:

$$
\epsilon_{nri} = \frac{1}{R} \left(\frac{\partial v_0}{\partial \theta} - \frac{z \partial w_0}{\partial \theta} + w_0 \right)
$$

(28)

انرژی کرنش استرینگرها را می‌توان با عبارت زیر بیان کرد:

$$
U_{ri} = \sum_{k=1}^{N_k} \left[\frac{1}{2} E_{ri} \int_A \epsilon_{ri}^2 dA_{ri} dx \right] + \sum_{k=1}^{N_k} \left[\frac{1}{2} G_{ri} J_{ri} \int \int \left(\frac{\partial^2 w_0}{\partial x \partial \theta} \right)^2 R dA_{ri} dx \right]
$$

(29)

بررسی اثر با پارامترهای مختلف تقویت کننده‌ها بر روی بردار کمانش پوسته

به منظور بررسی اثر عناصر مختلف بر بردار کمانش پوسته تقویت شده، یک پوسته تقویت شده با مشخصات جدول 1 در نظر گرفته می‌گردد.

جدول 1. مشخصات پوسته مینا

<table>
<thead>
<tr>
<th>مقدار</th>
<th>مترش صورتی ورودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 [mm]</td>
<td>L</td>
</tr>
<tr>
<td>82.5 [mm]</td>
<td>R</td>
</tr>
<tr>
<td>3 [mm]</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>تعداد لایه‌های لیمینت</td>
</tr>
<tr>
<td>[30/90/30]</td>
<td>زاویای لایه‌ها</td>
</tr>
<tr>
<td>4.5e-4 [N/m]</td>
<td>N_u</td>
</tr>
</tbody>
</table>

برای محوری وارد شده به پوسته

مشخصات مینایا

بررسی اثر تعداد رینگ‌ها و استرینگرها

به منظور بررسی اثر تعداد رینگ‌ها و استرینگرها بر روی بردار کمانش پوسته، خواص تقویت کننده‌ها را به صورت زیر در نظر گرفته می‌گردد:

<table>
<thead>
<tr>
<th>جنس رینگ‌ها و استرینگرها</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول پوسته L</td>
<td>144 [mm]</td>
</tr>
<tr>
<td>ضخامت پوسته t</td>
<td>82.5 [mm]</td>
</tr>
<tr>
<td>تعداد لایه‌های لیمینت</td>
<td>3</td>
</tr>
<tr>
<td>زاویای لایه‌ها</td>
<td>4.5e-4 [N/m]</td>
</tr>
</tbody>
</table>

برای محوری وارد شده به پوسته

به منظور بررسی اثر تعداد رینگ‌ها و استرینگرها بر روی بردار کمانش پوسته در جهات z, θ, x به صورت زیر تعیین می‌شوند:

$u_x = u_x - \frac{z \partial w_0}{\partial \theta} \frac{\partial w_0}{\partial x}$

(25)

کرنش استرینگرها در جهت محوری برای است و با

$$
\epsilon_{ri} = \frac{\partial u_x}{\partial x} - \frac{z \partial w_0}{\partial \theta} \frac{\partial w_0}{\partial x}
$$

(27)

و کرنش رینگ‌ها در جهت محیطی با عبارت زیر نشان داده می‌شود:

$$
\epsilon_{nri} = \frac{1}{R} \left(\frac{\partial v_0}{\partial \theta} - \frac{z \partial w_0}{\partial \theta} + w_0 \right)
$$

(28)

انرژی کرنش استرینگرها را می‌توان با عبارت زیر بیان کرد:

$$
U_{ri} = \sum_{k=1}^{N_k} \left[\frac{1}{2} E_{ri} \int_A \epsilon_{ri}^2 dA_{ri} dx \right] + \sum_{k=1}^{N_k} \left[\frac{1}{2} G_{ri} J_{ri} \int \int \left(\frac{\partial^2 w_0}{\partial x \partial \theta} \right)^2 R dA_{ri} dx \right]
$$

(29)
همان‌گونه که نمودار نشان می‌دهد، هرچه نسبت ارتفاع به عرض رینگ‌ها پیش‌تر شود، بار بحرانی کامانش هم زیادتر می‌شود. در حالی که مقدار بار بحرانی کامانش برای است ب‌ایا و مقدار بار بحرانی کامانش برای است ب‌ایا و در حالتی که نسبت ارتفاع به عرض رینگ‌ها باشد، بار بحرانی کامانش به

\[\frac{d_s}{d_r} = 0.5 \]

می‌باشد. به عرض رینگ‌ها، 5 برای کامانش کامانش

\[\frac{d_s}{d_r} = 0.12 \]

به‌نظر می‌رسد. این نتایج انجام این کار در شکل (5) نمایش داده شده است.

\[\text{شکل 3: اثر تعداد رینگ‌ها و استرینگ‌ها بر بر انت اوت می‌باشد.} \]

همان‌طور که ملاحظه می‌شود، با زیاد شدن تعداد رینگ‌ها و استرینگ‌ها در کامانش یوسته افزایش می‌یابد. با و طوری که کامانش یوسته دارای تقویت کننده رینگ و به‌طوری که هر مقداری باشد، نسبت کننده استرینگ کامانش یوسته تقیق نشده 9/۶۹ افزایش نشان می‌دهد و یوسته تقیق شده با 10 عدد رینگ و 5 عدد استرینگ، دارای یوسته یوسته تقیق نشده می‌باشد.

\[\text{شکل 4: اثر نسبت ارتفاع به عرض رینگ‌ها بر پوسته دو سر ساده} \]

با بررسی نمودار رسم شده ملاحظه می‌شود که به افزایش نسبت ارتفاع به عرض استرینگ‌ها، بار بحرانی کامانش افزایش قابل توجهی پیدا می‌کند.

\[\frac{d_s}{d_r} = 0.5 \]

در حالی که مقدار بار بحرانی کامانش برای است ب‌ایا و مقدار بار بحرانی کامانش به‌طوری که نسبت ارتفاع به عرض استرینگ‌ها برای است ب‌ایا باشد، بار بحرانی کامانش به

\[\frac{d_s}{d_r} = 0.12 \]

می‌باشد. بنابراین نسبت ارتفاع به عرض استرینگ‌ها از زیاد بار بحرانی کامانش پوسته خواهد داشت. در تمامی حالت‌های کامانش، کامانش در مود

\[m = 1, n = 5 \]

東方進步法 عليهم الصغر جامعی
بیشترین بار کماس موقعی حاصل می‌شود که انبساطگی رنگ‌ها در وسط پوسته بیشتر و در دو انتهای کمتر باشد.

![نمودار](https://via.placeholder.com/150)

شکل 7. اثر نحوه تویزیع رنگ‌ها در طول پوسته بر کماس پوسته دو سر ساده

در تمام حالت‌های گفته شده، کماس در مود $m=1, n=5$ اتفاق می‌افتد.

3-4. اثر نحوه تویزیع رنگ‌ها در طول پوسته

یکی دیگر از بارتره‌ها که بر پر کماس پوسته اثر می‌گذارد، نحوه چیدمان رنگ‌ها در طول پوسته می‌باشد. برای کنترل نحوه توزیع رنگ‌ها، از اکترامتر زیر به عنوان می‌کرد از فاصله رنگ‌ها از ابتدا پوسته استفاده می‌کنیم:

$$a_i = \left(\frac{i}{N_r + 1} \right)^\beta, \quad i = 1, 2, \ldots, N_r$$

تعداد رنگ‌ها را نشان می‌دهد. در حالتی که $\beta > 1$ باشد، جهت دخالت داخل نحوه تویزیع اکترامترها در طول پوسته، تابع زیر را به عنوان تغییرات ارتفاع اکترامترها در طول پوسته، تعیین می‌کنیم:

$$d_i(x) = \begin{cases} d_i(1 + \frac{d_i}{d_i^0} \left(\frac{L}{2} - x \right)^\beta), & 0 \leq x \leq \frac{L}{2} \\ d_i(1 + \frac{d_i}{d_i^0} \left(x - \frac{L}{2} \right)^\beta), & \frac{L}{2} < x \leq L \end{cases}$$

در این رابطه، Γ درجه تابع جدید جمله ای تغییرات ارتفاع اکترامتر d_i در طول پوسته. d_i^0 کمترین ارتفاع اکترامتر در وسط پوسته و d_i اختلاف بین بیشترین ارتفاع اکترامتر در دو انتهای پوسته با d_i^0 می‌باشد.

همچنین شکل (8) نحوه تغییرات ارتفاع را به صورت تصویری نمایش می‌دهد.

![نمودار](https://via.placeholder.com/150)

شکل 8. نحوه غیر یکنواخت خارج از مرکزی استریوتکس

جهت بررسی اثر اکترامتر با β, مقدار این اکترامتر را در محدوده $0.1, 0.5, 1, 1.5, 2$ تغییر می‌دهیم و در هر مورد مقدار $\beta = 1$ را محاسبه می‌کنیم. شکل (9) نمودار تغییرات بر حسب β کماس را در اثر تغییر نحوه تویزیع رنگ‌ها در طول پوسته نشان می‌دهد.

همانگونه که نشان دادیم، به ارزیابی 0.1, بیشترین بار بحران کماس را در آن که برای استفاده با $\beta = 0.5$, با کماس کاهش پیدا می‌کند و به

$$d_c = \left(\frac{1}{N_r + 1} \right)^\beta$$

ازای $\beta = 1$, بکریندر مقدار d_c به 1 می‌رسد. سپس به ارزیابی β با کماس افزایش پیدا می‌کند و به ارزیابی $\beta = 0.5$ کمتر است. بنابراین با تغییر متغیر این اکترامتر می‌توانیم مقدار را بر کماس پوسته را به طرزی بازیلیم 53% افزایش دهم. همچنین نتیجه‌هایی که گزارم که برای استفاده با $\beta = 0.5$, به ارزیابی β با کماس افزایش پیدا می‌کند و به
به منظور بررسی این اثر، درجه تابع تغییرات ارتفاع استینگر در امتداد طول پوسته (\(G\)\(\leq\) 1) با در حدوده \(0,1,2,3,4\) تغییر می‌دهم و بر کماس مثال‌گیری می‌کنم. نتیجه محاسبات در شکل (9) نشان داده شده است.

\[
\text{شکل 9. اثر نحوه توزیع ارتفاع از مرکزی استینگرها در طول پوسته بر بار کماس}
\]

با بررسی نمودار بالا می‌توان دریافت که هرچه دوبله تابع تغییرات ارتفاع استینگر در طول پوسته بیشتر باشد، مقدار بار برای کماس بیشتر خواهد بود. به ازای \(\Gamma=0\) مقدار بار کماس برای استنگرها \[N/m\] \(=99.7\) و به ازای \(\Gamma=4\) برای استنگرها \[N/m\] \(=2057.5\) است. لذا با انتخاب مناسب درجه تابع تغییرات ارتفاع (خرجی از مرکزی) استینگرها در طول پوسته می‌توانیم بار کماس را تا دو برابر افزایش دهیم.

همچنین به ازای \(\Gamma=0.1\) کماس مدل \(0.1\) کماس مدل \([nm]\) \(=5 \times m\) پایه و برای \(\Gamma=2\) \([nm]\) \(=6 \times m\) پایه و \(\Gamma=4\) \([nm]\) \(=6 \times m\) پایه و \(\Gamma=4\) \([nm]\) \(=6 \times m\) پایه و \(\Gamma=4\)

\[
\text{شکل 10. اثر نحوه توزیع بردگی (خارجی از مرکزی) بر ارتفاع استینگرها}
\]

یکی از پارامترهایی که بر روی بار کماس تاثیر گذار است، داخلی بار خارجی بودن تقویت کننده‌های خرید و استینگرها باشد. در اینجا می‌توان چهار حالت مختلف را مورد بررسی قرار داد که عبارتند از: استینگر خارجی- استینگر داخلی، رنگ خارجی- استینگر داخلی، رنگ خارجی- استینگر داخلی- داخلی. استینگر داخلی-

در اینجا از چهار تقویت کننده رنگ خارجی و چهار تقویت کننده استینگر استفاده شده و برای هر کدام از چهار ترکیب گفته شده در بالا برای کماس برابر برابر سه‌گانه محاسبه شده است. نتیجه این محاسبه در شکل (10) نشان داده شده است.
جدول ۲. مقایسه پر بحرانی کمانش دو نوع کلاسیک و مربوط در حالت‌های مختلف

<table>
<thead>
<tr>
<th>NO. of stiffeners</th>
<th>CLT</th>
<th>FSVD</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non stiffened</td>
<td>457076.6</td>
<td>390769.4</td>
<td>17</td>
</tr>
<tr>
<td>(N_s = 2, N_s = 3)</td>
<td>73494.8</td>
<td>606934.8</td>
<td>21</td>
</tr>
<tr>
<td>(N_s = 3, N_s = 2)</td>
<td>965168.9</td>
<td>794523.2</td>
<td>22.5</td>
</tr>
<tr>
<td>(N_s = 4, N_s = 4)</td>
<td>1151243</td>
<td>939773.9</td>
<td>21.5</td>
</tr>
<tr>
<td>(N_s = 5, N_s = 10)</td>
<td>1377753</td>
<td>1111348</td>
<td>24</td>
</tr>
<tr>
<td>(N_s = 10, N_s = 5)</td>
<td>2124896</td>
<td>1717545</td>
<td>23.7</td>
</tr>
</tbody>
</table>

همانطور که مشاهده می‌شود، تنوری کلاسیک مقایسه با کمانش را با بالاتر از مقدار اولیه نشان می‌دهد و در پیش‌ترین حالات به کمک به تقویت پوسته با ۵ عدد، دست‌بسته و ۱۰ عدد انتهایی به یکدیگر دسترسی می‌آید.

در این قسمت، هر کام از عامل موثر بر بحرانی کمانش به عنوان یک متغیر طراحی در نظر گرفته می‌شود و برای بدست آوردن حالت بهینه با استفاده از روش گورئیلیکینگ بهینه سازی را انجام دهیم. جدول (۳) متغیرهای طراحی را به هر دو مقدار تغییرات آنها نشان می‌دهد. تابع هدف، برای کمانش پوسته می‌باشد.

برای انجام پیشنهادی برای خنثی کردن نیمی که دو روش بهینه سازی یک کام از نظر اینکه بهینه یا مقداری از روش گورئیلیکینگ بهینه سازی با استفاده از تابع هدف که در زیرتاق پوسته، وزن کل آن را تابع نگه داریم. با استفاده از داده‌های جدول (۱) وزن پوسته را با کوارش (درباره تقویت کننده) بر این حساب دو گیل. مدلی در همین‌سان ساخته شده نیز به‌صورت حساسیتی بیشتری به قابلیت طراحی را که به کمانش بهینه نشان‌دهنده دیده به دست آورده.

نتایج حاصل از پیشنهادی قابلیت بهینه متغیرهای طراحی، وزن و مقدار انتهایی نیز در جدول (۲) نشان داده شده‌اند.

۳.۲۲ انجام پیشنهادی سازی بر روی عوامل موثر بر بحرانی کمانش

برای اجرای با راه اندازی پیشنهادی، دو جدول مربوط به تغییرات طراحی و مقدار بهینه آنها

<table>
<thead>
<tr>
<th>متغیر طراحی</th>
<th>مقدار بهینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{[mm]})</td>
<td>۲.۶۱</td>
</tr>
<tr>
<td>(N_s)</td>
<td>۴</td>
</tr>
<tr>
<td>(N_s)</td>
<td>۴</td>
</tr>
<tr>
<td>(d_{[mm]})</td>
<td>۴.۲۴</td>
</tr>
<tr>
<td>(b_{[mm]})</td>
<td>۱.۰۲</td>
</tr>
</tbody>
</table>

به منظور بررسی اثر تغییرات گرمایشی پیشنهادی، دو جدول مربوط به تغییرات طراحی و مقدار بهینه آنها

<table>
<thead>
<tr>
<th>متغیر طراحی</th>
<th>مقدار بهینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{[mm]})</td>
<td>۲.۶۱</td>
</tr>
<tr>
<td>(N_s)</td>
<td>۴</td>
</tr>
<tr>
<td>(N_s)</td>
<td>۴</td>
</tr>
<tr>
<td>(d_{[mm]})</td>
<td>۴.۲۴</td>
</tr>
<tr>
<td>(b_{[mm]})</td>
<td>۱.۰۲</td>
</tr>
</tbody>
</table>

ارزیابی کاربرد بحرانی کمانش، یک‌دیگر از عوامل موثر در میزان بار بحرانی کمانش پوسته، طراحی انتخاب استرگنگری در طول پوسته به پایه، بهترین نسخه را انتخاب از طول پوسته که هرچه درجه تابع تغییرات انتخاب استرگنگری در طول پوسته بالاتر باشد مقدار بحرانی کمانش پیشنهاد است و با انتخاب درجه این

نتایج گیری

با توجه به تحلیل‌های انجام شده در قسمت‌های پیشین، می‌توان نتایج ذیل را ذکر نمود:

لیست افزایش هزینه نسبت ارتفاع به عرض تقویت کننده ریگ

جهت بررسی تغییرات در طول پوسته به بهینه‌سازی‌های پایه، با استفاده از روش گورئیلیکینگ بهینه سازی، می‌توان بهینه سازی را بر اساس داده‌های جدول (۱) وزن پوسته را با کوارش (درباره تقویت کننده) بر این حساب دو گیل. مدلی در همین‌سان ساخته شده نیز به‌صورت حساسیتی بیشتری به قابلیت طراحی را که به کمانش بهینه نشان‌دهنده دیده به دست آورده.

نتایج حاصل از پیشنهادی قابلیت بهینه متغیرهای طراحی، وزن و مقدار انتهایی نیز در جدول (۲) نشان داده شده‌اند.

جدول ۲. مقایسه محدودیت‌های طراحی و مقدار بهینه

<table>
<thead>
<tr>
<th>متغیر طراحی</th>
<th>مقدار بهینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{[mm]})</td>
<td>۲.۶۱</td>
</tr>
<tr>
<td>(N_s)</td>
<td>۴</td>
</tr>
<tr>
<td>(N_s)</td>
<td>۴</td>
</tr>
<tr>
<td>(d_{[mm]})</td>
<td>۴.۲۴</td>
</tr>
<tr>
<td>(b_{[mm]})</td>
<td>۱.۰۲</td>
</tr>
</tbody>
</table>

به منظور بررسی اثر تغییرات گرمایشی پیشنهادی، دو جدول مربوط به تغییرات طراحی و مقدار بهینه آنها

<table>
<thead>
<tr>
<th>متغیر طراحی</th>
<th>مقدار بهینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{[mm]})</td>
<td>۲.۶۱</td>
</tr>
<tr>
<td>(N_s)</td>
<td>۴</td>
</tr>
<tr>
<td>(N_s)</td>
<td>۴</td>
</tr>
<tr>
<td>(d_{[mm]})</td>
<td>۴.۲۴</td>
</tr>
<tr>
<td>(b_{[mm]})</td>
<td>۱.۰۲</td>
</tr>
</tbody>
</table>

مراجع

\[L_{32} = -\left(\frac{A_{22}}{R^2} + \frac{H_{44}}{R^2} \right) n \frac{T_4}{\alpha^2 T_3} \]
\[L_{33} = H_{55} - \left(\frac{H_{44} n^2 \alpha^2}{R^2} + \frac{A_{22}}{R^2} \right) \frac{T_4}{\alpha^2} T_3 \]
\[+ \left(\frac{2n^4 \pi^2 E_2}{R^3} + \frac{2 \pi^2 A_1 E_2}{R} \right) \sum_{i=1}^N \sin^2 \lambda x_i \]
\[+ \frac{2n^2 \pi^2 \lambda G J}{R} \sum_{i=1}^N \cos^2 \lambda x_i + \frac{1}{2} LN \pi \lambda^4 I_n \left(E_2 + N_n \right) \]
\[+ \frac{4n^2 \pi^2 \lambda E_1 B_2}{R^2} \sum_{i=1}^N \sin \lambda x_i + \frac{PL \pi (n^2 - 1)}{4} + N_n \]
\[L_{34} = \left(H_{55} - \frac{B_{12}}{R} \right) \frac{1}{\alpha} \]
\[L_{35} = \left(\frac{H_{44}}{R} + \frac{B_{22}}{R^2} \right) n \frac{T_4}{\alpha^2 T_3} \]
\[L_{41} = B_{41} R \alpha^2 T_1 - \frac{B_{16} n T_2}{R} \]
\[L_{42} = (B_{12} + B_{66}) n T_2 \]
\[L_{43} = (B_{12} - H_{55} R) T_2 \]
\[L_{44} = D_{41} R \alpha^2 T_1 - \left(\frac{D_{66} n^2 \alpha^2}{R} + H_{55} R \right) \frac{1}{\alpha} \]
\[L_{45} = (D_{12} + D_{66}) n T_2 \]
\[L_{91} = -(B_{41} + B_{66}) \alpha n T_3 \]
\[L_{92} = B_{66} R \alpha^2 T_3 \left(\frac{B_{22} n^2 \alpha^2}{R} - H_{44} \right) \frac{1}{\alpha} \]
\[L_{93} = -\left(\frac{B_{22}}{R} + H_{44} \right) n T_4 \]
\[L_{94} = -(D_{12} + D_{66}) n T_3 \]
\[L_{95} = D_{66} R \alpha^2 T_3 - \left(\frac{D_{66} n^2 \alpha^2}{R} + H_{44} R \right) \frac{1}{\alpha} \]
\[\alpha = \frac{\lambda}{L} \quad , \quad \lambda = m \pi \]
\[T_1 = \alpha \left(\cosh \lambda - 1 \right) - \alpha \left(\cosh \lambda - 1 \right) - \sigma \left(\alpha \cosh \lambda + \alpha \sin \lambda \right) \]
\[T_3 = \alpha \left(\cosh \lambda - 1 \right) - \alpha \left(\cosh \lambda - 1 \right) - \sigma \left(\alpha \cosh \lambda - \alpha \sin \lambda \right) \]
\[T_5 = \alpha \cosh \lambda - \alpha \sin \lambda - \sigma \left(\alpha \cosh \lambda - \alpha \sin \lambda \right) \]
\[T_7 = \alpha \cosh \lambda + \alpha \sin \lambda - \sigma \left(\alpha \cosh \lambda + \alpha \sin \lambda \right) \]

در روابط بالا: \(I_{xx} = I_x + \frac{z_x^2}{2} A_x \quad I_{yy} = I_y + \frac{z_y^2}{2} A_y \)

و \(I_{zz} = I_z + \frac{z_z^2}{2} A_z \)

و \(I_{cy} = I_{cx} = I_{cz} = I_{cy} = I_{cx} = I_{cz} \) می‌باشد.

به‌عنوان مثال برابر با: \[J_r = \frac{1}{3} h_r h^3 \quad J_s = \frac{1}{3} h_s h^3 \]