بررسی اثر تقویت کننده‌ها بر بار کمانش پوسته استوانه‌ای کامپوزیتی

پروپان قوامی توتشامی و علی اصغر جعفري

چکیده: هدف از ارائه این مقاله، بررسی اثر پارامترهای مختلف تقویت کننده‌ها رنگ و استرینجر بر روي بار کمانش پوسته استوانه‌ای کامپوزیتی می‌باشد. ماده کامپوزیت مرد استفاده لمینت و روش به دست آوردن معادلات پوسته، روش انرژی و اصل مینیموم انرژی پتانسیل یافته. همچنین معادلات پوسته بر مبنای تغییر شکل بررسی شده اولیه پوسته ها نشانده شده اند و شرایط مرزی پوسته به صورت ورود سر به فرض شده اند. تقویت کننده‌های رنگ و استرینجر بر صورت المان‌ها مجزا از پوسته مدل شده و سپس اثر ترمیم‌های مختلف با استفاده از معادلات پیش‌گیری پیشین و تقویت کننده‌ها به می‌رسند. اثر پارامترهای مختلف از جمله فاکتور کننده‌ها رنگ و استرینجر، پارامترهای هندسی تقویت کننده‌ها و نحوه چیدمان آنها مورد بررسی قرار گرفته است و نمودارها مربوطه ترسیم شده اند. همچنین برای در نظر گرفتن همبستگی پارامترهای موتور بر بار کمانش، می‌کنم یکی از برتری‌های طراحی در نظر گرفتی شده اند و به مهندسی فاضل در تقایت پوسته به پوسته تقویت شده، به روش الگوریتم فیزیکی انجام گرفته است. در پایان نتایج حاصل شده ارائه گردیده است.

واژه‌های کلیدی: پوسته کامپوزیتی، تقویت کننده، بار کمانش، تقویت برداری اول، بهینه سازی

1. مقدمه

سازه‌های پوسته استوانه‌ای یکی از مهم‌ترین و پرکاربردترین سازه‌های مورد استفاده در صنایع مختلف است. سیستم‌های کامپوزیتی از این سازه‌ها استفاده می‌کنند به طوری که روند بهبود حداکثر با روش‌های مختلف استفاده می‌شود. این مقاله به نگاه شما که تا حد امکان کم شود به بیان متغیر استفاده از مواد کامپوزیتی منظور به وجود گرفته و در نهایت بهبود و سه بعدی بود. با توجه به روش‌های مختلف تقویت کننده‌ها، کامپوزیت‌های جهت بهبود و تغییر بسیاری می‌توانند مورد استفاده قرار گیرند. Abaquis و Bosor به دو کدام کامپوزیتی موجود نظیر مقایسه‌گردد. نتایج نشان داد که در پوسته‌های نازک، انلایت پاداری خیلی به طور قابل توجهی تغییر نمی‌یابد. این نتیجه در مورد بار کمانش می‌دهد. همچنین برای پوسته‌های سخت نیز در نظر گرفته می‌شود. غیر از طریق در مورد کمانش عموماً تغییر نیز به هم می‌دهند، ولی در مورد کمانش محلی با هم تفاوت دارند. در نهایت، هر چه
بررسی اثر تقویت کننده‌ها بر پاراپترهای مختلف بر روی بردار کماسی سفنتی بوده و بردار کرنش ε به صورت رابطه (2) تعريف مي-شود.

$$U_c = \frac{1}{2} \int \frac{\varepsilon}{R} \varepsilon^T [S] \varepsilon \, Rd\xi$$
(2)

$[S]$ ماتریس سفنتی بوده و بردار کرنش ε به صورت رابطه (3)

$$\varepsilon = \{ \varepsilon_x, \varepsilon_y, \gamma_{xy}, \gamma_{xz}, \gamma_{yz} \}$$
(3)

در این رابطه:

$$\varepsilon_x = \frac{\partial w_0}{\partial x} + \frac{1}{2} \left(\frac{\partial w_0}{\partial \theta} + z \frac{\partial \psi_\theta}{\partial x} \right)^2 + z \frac{\partial \psi_\theta}{\partial x}$$

$$\varepsilon_y = \frac{1}{R} \left(\frac{\partial w_0}{\partial \theta} + z \frac{\partial \psi_\theta}{\partial \theta} + w_0 \right) + \frac{1}{2R} \left(\frac{\partial w_0}{\partial \theta} \right)^2$$

$$\varepsilon_z = 0$$

$$\gamma_{xy} = \psi_\theta + \frac{1}{R} \left(\frac{\partial w_0}{\partial \theta} \right)$$

$$\gamma_{xz} = \psi_\theta + \frac{w_0}{\partial x}$$

$$\gamma_{yz} = \frac{1}{R} \left(\frac{\partial w_0}{\partial \theta} + z \frac{\partial \psi_\theta}{\partial x} \right) \left(\frac{\partial v_0}{\partial \theta} + z \frac{\partial \psi_\theta}{\partial x} \right) + \frac{\partial v_0}{\partial x}$$

$$\frac{1}{R} \left(\frac{\partial v_0}{\partial \theta} \right)$$

$[S]$ در حالی کلی برای مناده آرتوروپاسک عبارت است از:

$$[S] = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} & 0 & 0 \\ A_{21} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} & 0 & 0 \\ A_{16} & A_{26} & A_{26} & B_{16} & B_{26} & B_{26} & 0 & 0 \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} & 0 & 0 \\ B_{12} & B_{12} & B_{16} & D_{12} & D_{12} & D_{16} & 0 & 0 \\ B_{16} & B_{26} & B_{26} & D_{16} & D_{26} & D_{26} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & H_{44} & H_{45} \\ 0 & 0 & 0 & 0 & 0 & 0 & H_{45} & H_{55} \end{bmatrix}$$
(4)

در این رابطه، ماتریس‌های سفنتی کششی (A_{ij}) سفنتی کویل (B_{ij})، سفنتی خمیشی (D_{ij}) و سفنتی برنش (H_{ij}) به صورت زیر تعريف مي-شوند:

$$\begin{bmatrix} a_{11} & a_{12} & a_{16} & b_{11} & b_{12} & b_{16} & 0 & 0 \\ a_{21} & a_{22} & a_{26} & b_{12} & b_{22} & b_{26} & 0 & 0 \\ a_{16} & a_{26} & a_{26} & b_{16} & b_{26} & b_{26} & 0 & 0 \\ b_{11} & b_{12} & b_{16} & d_{11} & d_{12} & d_{16} & 0 & 0 \\ b_{12} & b_{12} & b_{16} & d_{12} & d_{12} & d_{16} & 0 & 0 \\ b_{16} & b_{26} & b_{26} & d_{16} & d_{26} & d_{26} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & h_{44} & h_{45} \\ 0 & 0 & 0 & 0 & 0 & 0 & h_{45} & h_{55} \end{bmatrix}$$

برای پوسته‌ها که از لایه‌های مختلف، ماده ارتوتروپیک تشکیل شده، سفنتی‌ها را می-توان به صورت زیر نوشت:

$$u = u_0 (x, \theta) + z \psi (x, \theta)$$
$$v = v_0 (x, \theta) + z \psi_\theta (x, \theta)$$
$$w = w_0 (x, \theta)$$

(1)

تغییر مکانه‌ی حرکت از مقطعی را می‌توان به وسیله رابطه زیر با تغییر مکانه‌ی سطح مباین مرتب ساخت:

$$u = u_0 (x, \theta) + z \psi (x, \theta)$$
$$v = v_0 (x, \theta) + z \psi_\theta (x, \theta)$$
$$w = w_0 (x, \theta)$$

(1)

برای پوسته‌ها که از لایه‌های مختلف تشکیل شده، سفنتی‌ها را می‌توان به صورت زیر نوشت:

$$u = u_0 (x, \theta) + z \psi (x, \theta)$$
$$v = v_0 (x, \theta) + z \psi_\theta (x, \theta)$$
$$w = w_0 (x, \theta)$$

(1)

برای پوسته‌ها که از لایه‌های مختلف تشکیل شده، سفنتی‌ها را می‌توان به صورت زیر نوشت:

\[
A_y = \sum_{k=1}^{N} \bar{Q}_y (h_y - h_{y+1})
\]

\[
B_y = \frac{1}{2} \sum_{k=1}^{N} \bar{Q}_y (h_y^2 - h_{y+1}^2), D_y = \frac{1}{3} \sum_{k=1}^{N} \bar{Q}_y (h_y^3 - h_{y+1}^3)
\]

\[
H_{ij} = k_0 \sum_{k=1}^{N} \bar{Q}_{ij} (h_i - h_{i+1})
\]

\[
\psi = \sum_{n=0}^{\infty} \eta_n(x) \phi_n(\theta)
\]

\[
\eta_n(x) = \alpha, \cos \frac{\Delta x}{L} + \alpha, \cos \frac{\Delta x}{L} - \sigma \left(\alpha, \sin \frac{\Delta x}{L} - \alpha, \sin \frac{\Delta x}{L} \right)
\]

\[
\phi_n(\theta) = \phi_n(\theta) = \cos \alpha n \theta
\]

\[
\Pi = U_x + U_y + V_x + V_y + V_n
\]

\[
Q_{11} = \frac{E_{11}}{1 - V_{12}^2} - V_{12}^2, Q_{12} = \frac{V_{12} E_{22}}{1 - V_{12}^2}, Q_{66} = G_{12}
\]

\[
Q_{22} = \frac{E_{22}}{1 - V_{12}^2}, Q_{44} = G_{23}, Q_{55} = G_{13}
\]

\[
N_1 = \text{عدد مکان‌های لامینت}
\]

\[
\text{کاهش پایه‌برای لایه} k \text{ است و به صورت زیر تعریف می‌شود:}
\]

\[
Q = [T]^{-1} \sigma \sigma^T
\]

\[
\sigma = \begin{bmatrix}
\cos \alpha & s & 2 \cos \alpha & 0 & 0 \\
s & \cos \alpha & -2 \cos \alpha & 0 & 0 \\
0 & 0 & 0 & \cos \alpha & 0 \\
0 & 0 & 0 & 0 & \cos \alpha
\end{bmatrix}
\]

\[
\text{عبارت است از:}
\]

\[
Q_{11} = \frac{E_{11}}{1 - V_{12}^2} - V_{12}^2, Q_{12} = \frac{V_{12} E_{22}}{1 - V_{12}^2}, Q_{66} = G_{12}
\]

\[
Q_{22} = \frac{E_{22}}{1 - V_{12}^2}, Q_{44} = G_{23}, Q_{55} = G_{13}
\]
بررسی اثر تقویت گردنها بر بار کمانش پوسته استوانهای کامپوزیتی

تغییر مکانیکی تقویت گردنها (طی تدوین نیروی اول - برتری) در جهات η, θ, R به صورت زیر تعریف می‌شوند:

$$u_\eta = u_\eta - z \frac{\partial w}{\partial x}, \quad v_\theta = v_\theta - z \frac{\partial w}{\partial \theta}, \quad w = w_0$$

کرنش استریتیگرها در جهت محوری برابر است با:

$$e_r = \frac{1}{R} \left(\frac{\partial v_0}{\partial \theta} - \frac{\partial^2 w_0}{\partial x \partial \theta} + w_0 \right)$$

و کرنش ریگنگ در جهت محیطی با عبارت زیر نشان داده می‌شود:

$$e_\theta = \frac{1}{R} \left(\frac{\partial^2 w_0}{\partial x^2} \right)$$

انرزو کرنش استریتیگرها را می‌توان با عبارت زیر بیان کرد:

$$U_r = \sum_{i=1}^{N_s} \frac{1}{2} E_{ik} J_{ik} \int_{\Omega_0} e_{i \theta}^2 dA_i dx$$

$$U_\theta = \sum_{i=1}^{N_s} \frac{1}{2} G_{ik} J_{ik} \int_{\Omega_0} e_{i \theta}^2 dA_i dx$$

جدول 1. مشخصات پوسته مینی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول پوسته</td>
<td>L</td>
</tr>
<tr>
<td>شعاع پوسته</td>
<td>R</td>
</tr>
<tr>
<td>ضخامت پوسته</td>
<td>t</td>
</tr>
<tr>
<td>گردن/ایوکسی</td>
<td>3</td>
</tr>
<tr>
<td>تعداد به‌های لیمیتید</td>
<td></td>
</tr>
<tr>
<td>روابط لایه‌ها</td>
<td></td>
</tr>
<tr>
<td>فشار داخلی</td>
<td>P</td>
</tr>
<tr>
<td>نیروی محوری</td>
<td>N_{ax}</td>
</tr>
</tbody>
</table>

$$V_{P} = - \int_{\Omega_0} \int_{\Omega_0} \frac{1}{2} \left(\frac{\partial^2 w_0}{\partial x^2} + w_0 \right) dA_d d\theta$$

$$V_{N_{ax}} = \frac{N_e}{2} \int_{\Omega_0} \left(\frac{\partial u_\eta}{\partial x} + \frac{\partial v_\theta}{\partial \theta} \right)^2 R^2 dx d\theta$$

به منظور بررسی اثر عوامل مختلف بر بار کمانش پوسته تقویت شده، یک پوسته تقویت‌شده به مشخصات جدول (1) در نظر گرفته می‌شود.

3.2 اثر تعداد ریگنگ و استریتیگرها

به منظور بررسی اثر تعداد ریگنگ و استریتیگرها بر روی بار کمانش پوسته تقویت شده، یک پوسته تقویت‌شده به مشخصات جدول (1) در نظر گرفته می‌شود.

$$\frac{\partial^2 w}{\partial x^2} = \frac{1}{2} \int_{\Omega_0} \left(\frac{\partial u_\eta}{\partial x} + \frac{\partial v_\theta}{\partial \theta} \right)^2 R^2 dx d\theta$$
همان‌گونه که نمودار نشان می‌دهد، هرچه نسبت ارتفاع به عرض رنگ‌پیشتر شود، پارا بهره‌بردار کمانش هم زیادتر می‌شود. در حالتی که عرض استرینگها 0.5 باشد، مقیاس برای برای کمانش 12 باشد. برای برای کمانش به بالا، مقیاس برای برای کمانش 12 باشد. برای بری
بررسی اثر تقویت کننده‌ها بر کامیون‌پوش راهسازی‌ای کامپوزیتی

1. اثر نحوه توییز رنگ‌ها در طول پوسته

یکی دیگر از پارامترهایی که بر پای تغییرات پوسته اثر می‌گذارد، نحوه چیدمان رنگ‌ها در طول پوسته می‌باشد. برای کنترل نحوه توییز رنگ‌ها، از پارامتر زیر به عنوان میزان از فاصله رنگ‌ها از ابتدای پوسته استفاده می‌کنیم:

\[
\alpha_i = \left(\frac{i}{N_r + 1} \right)^\beta, \quad i = 1,2, \ldots, N_r
\]

2. اثر انتشار تغییرات از مرکزی استریوگره در طول پوسته

همچنین، نحوه تغییرات از مرکزی استریوگره در طول پوسته، تابع زیر را به عنوان تغییرات ارتفاع استریوگره در طول پوسته تعریف می‌کنیم:

\[
d_i(x) = \begin{cases}
0 & 0 \leq x \leq L/2 \\
\left(1 + \frac{d_i}{d_i(1)} \left(\frac{L}{2} - x\right)^2\right)^{1/\beta}, & L/2 < x \leq L
\end{cases}
\]

در این رابطه، \(d_i\) دیس کمترین ارتفاع استریوگره در طول پوسته، \(d_i(1)\) اختلاف مابین بیشترین ارتفاع استریوگره در دو انتهای پوسته با \(d_i\) می‌باشد.

3. اثر انتشار تغییرات نرمال فاصله بین رنگ‌ها

چهارتیری اثر پارامتر \(\beta\) مقدار این پارامتر را در محدوده [0.1, 0.5, 1, 1.5, 2] تغییر می‌دهیم و در هر مورد مقدار پارامتر \(\beta\) مقدار محدود را محاسبه می‌کنیم. شکل 2 نمودار تغییرات با تغییر کامپوزیت‌ها در اثر تغییر نحوه توییز رنگ‌ها در طول پوسته نشان داده است.

4. اثر انتشار تغییرات نرمال فاصله بین رنگ‌ها

همانگونه که نمودار نشان می‌دهد، به ازای \(\beta = 0.1\) بیشترین بار یک‌زبان کامپوزیت‌ها را داریم که برای استفاده با \(\beta = 0.5\) از مقدار \(\beta = 1\) از پارامتر مقدار نرمال یادآوری می‌نماید. سپس به ازای \(\beta = 1\) از پارامتر افزایش پیدا می‌کند ولی همچنان از مقدار اولیه به ازای \(\beta = 0.1\) کمتر است. بنابراین با تغییر مقدار این پارامتر مقدار پارامتر پوسته را به میزان ۵۰٪ افزایش دهیم. همچنین نتیجه می‌گیریم که
به منظور بررسی این اثر، درجه تابع تغییرات ارتفاع استرینگر در استاندارد نیروی پوسته (\(\Gamma \)) را در محدوده \([0, 1, 2, 3, 4] \) تغییر می‌دهم و بر کامش‌های مختلف متغیر اصلی محسوب می‌کنم. نتیجه محاسبات در شکل 9 نشان داده شده است.

شکل 9. نوبت توزیع ارتفاع (خارجی از مرکز) استرینگرها در طول پوسته بر بال کامش

با بررسی نمونه‌برداری بالا، می‌توان دریافت که هرچه درجه تابع تغییرات ارتفاع استرینگر در طول پوسته بالا بوده، مقادیر بهتری برای کامش پیش‌بینی خواهد بود. به این‌ترنت \(\Gamma = 0 \) مقدار برای کامش برای استب واکنش \(994.7[N/m] \) و به این‌ترت \(\Gamma = 4 \) مقدار است با \(2057.5[N/m] \).

لذا با انتخاب مناسب درجه تابع تغییرات ارتفاع (خارجی از مرکز) استرینگر در طول پوسته می‌توانیم بر بال کامش را تا دو برای فرایش درهم بگیریم.

\(\gamma \) همچنین به این اتاحت \(\gamma = 0.1 \) کامش می‌تواند در محدوده \(1, 5 \) و به این‌ترت \(\gamma = 4 \) مقدار است با \(1, 6 \) به‌طور مشابه می‌باشد.

شکل 10. نوبت تقویت (داخلی از مرکز) بر بال کامش

یکی از پارامترهایی که بر روی بال کامش تأثیر گذار است داخلی یا خارجی بودن تقویت کننده‌های زیره و استرینگری می‌باشد. در اینجا می‌توان جهت مختلفی را مورر بررسی قرار داد که جدول 3 مشخص‌کننده ریک خارجی-استرینگر خارجی-استرینگر داخلی-استرینگر داخلی-استرینگر دارای کدام تاریکی است و در اینجا از مرحله‌های مختلف بدست آورده شده‌است.

اگر این‌طور عملکرد نشان دهنده ممکن است با توجه به بازیابی کامش‌ها به جسم داده شده است.
پیشینه آن

جدول ۲. مقایسه بار هر کانال کمانش دو انواع کلاسیک

| صفت | مقدار | % خطای
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>بارهای کمانش را نشان می‌دهد: بار بحرانی کمانش</td>
<td>N_r</td>
<td>457076.6</td>
</tr>
<tr>
<td>بارهای کمانش را نشان می‌دهد: بار بحرانی کمانش</td>
<td>N_r</td>
<td>734594.8</td>
</tr>
<tr>
<td>بارهای کمانش را نشان می‌دهد: بار بحرانی کمانش</td>
<td>N_r</td>
<td>965168.9</td>
</tr>
<tr>
<td>بارهای کمانش را نشان می‌دهد: بار بحرانی کمانش</td>
<td>N_r</td>
<td>1151243</td>
</tr>
<tr>
<td>بارهای کمانش را نشان می‌دهد: بار بحرانی کمانش</td>
<td>N_r</td>
<td>1377753</td>
</tr>
<tr>
<td>بارهای کمانش را نشان می‌دهد: بار بحرانی کمانش</td>
<td>N_r</td>
<td>2124896</td>
</tr>
</tbody>
</table>

کلاسیک

جدول ۳. محدوده تغییرات منفی‌های طراحی و مقدار پیشنهاد

<table>
<thead>
<tr>
<th>صفت</th>
<th>مقدار</th>
<th>$d_{[mm]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار پیشنهاد</td>
<td>2.61</td>
<td>1–3</td>
</tr>
<tr>
<td>مقدار پیشنهاد</td>
<td>3</td>
<td>1–10</td>
</tr>
<tr>
<td>مقدار پیشنهاد</td>
<td>8</td>
<td>1–10</td>
</tr>
<tr>
<td>مقدار پیشنهاد</td>
<td>4.24</td>
<td>1–8</td>
</tr>
<tr>
<td>مقدار پیشنهاد</td>
<td>1.02</td>
<td>1–8</td>
</tr>
</tbody>
</table>

مراجع

\[
L_{32} = -\left(\alpha_{12} + \frac{H_{44}}{R^2} \right) n \frac{T_4}{\alpha^2 T_3},
\]
\[
L_{33} = H_{55} - \left(\alpha_{22} + \frac{1}{\alpha^2} \right) \frac{T_4}{T_3} + \left(n^2 \pi^2 \frac{1}{R^3} \right) \sum_{i=1}^{\infty} \sin^2 \lambda x_i + \frac{1}{2} L N, \pi \alpha^4 I_0 (E_1 + N_\nu)
\]
\[
+ \left(n^2 \pi^2 \frac{1}{R^3} \right) \sum_{i=1}^{\infty} \sin^2 \lambda x_i + \frac{PL\alpha (n^2 - 1)}{4} + N_\nu
\]
\[
L_{34} = \left(H_{55} - \frac{B_{12}}{R} \right) \frac{1}{\alpha}
\]
\[
L_{35} = \left(H_{44} + \frac{B_{22}}{R^2} \right) n \frac{T_4}{\alpha^2 T_3}
\]
\[
L_{41} = B_{11} R \alpha \frac{T_1}{n^2 T_2} - \frac{B_{66}}{R} n^2 T_2
\]
\[
L_{42} = (B_{12} + B_{66}) n T_2
\]
\[
L_{43} = (B_{12} - H_{55} R) T_2
\]
\[
L_{44} = D_{11} R \alpha \frac{T_1}{n^2 T_2} - \frac{D_{66}}{R} n^2 T_2
\]
\[
L_{45} = (D_{12} + D_{66}) n T_2
\]
\[
L_{51} = -(B_{12} + B_{66}) \alpha \frac{T_1}{T_3}
\]
\[
L_{52} = B_{66} R \alpha \frac{T_1}{n^2 - H_{44} \frac{1}{\alpha}} T_4
\]
\[
L_{53} = \left(\frac{B_{22}}{R} + H_{44} \right) \frac{n}{T_4}
\]
\[
L_{54} = -(D_{12} + D_{66}) n T_3
\]
\[
L_{55} = D_{66} R \alpha \frac{T_1}{n^2 + H_{44} \frac{1}{\alpha}} T_4
\]

\[
\alpha = \frac{\lambda}{L}, \quad \lambda = m \pi
\]

\[
T_1 = \alpha_1 (\cosh \lambda - 1) - \alpha_2 (\cos \lambda - 1) - \sigma (\alpha_1 \sinh \lambda + \alpha_2 \sin \lambda)
\]
\[
T_2 = \alpha_1 (\cosh \lambda - 1) - \alpha_2 (\cos \lambda - 1) - \sigma (\alpha_1 \sinh \lambda - \alpha_2 \sin \lambda)
\]
\[
T_3 = \alpha_1 \sinh \lambda - \alpha_2 \sin \lambda - \sigma (\alpha_1 (\cosh \lambda - 1) - \alpha_2 (\cos \lambda - 1))
\]
\[
T_4 = \alpha_1 \sinh \lambda + \alpha_2 \sin \lambda - \sigma (\alpha_1 (\cosh \lambda - 1) + \alpha_2 (\cos \lambda - 1))
\]

در روابط بالا:

\[
I_{xx} = I_x + \frac{1}{3} A_x \quad \text{و} \quad I_{yy} = I_y + \frac{1}{3} A_y
\]

همچنین، \(I_x\) و \(I_y\) ممانهای سطح حول محور مرکزی ریخت و استرس،

می‌باشد. همچنین، \(I_x\) و \(I_y\) ممانهای قطبی سطح بوده و بر اساس با:

\[
J_e = \frac{1}{3} h, h^3 \quad \text{و} \quad J_s = \frac{1}{3} h, h^3
\]