طراحی و ساخت روشنگر فراصوتی جهت تهیه تصاویر روبش (B-Scan) B

وحید محبوبی پور، فرحگان هنرور و امیر عباسیار

چکیده: روش عملی چند نسخه تهیه آزمون‌های فراصوتی نمایش روبش A و B (A-Scan) نشان داده می‌باشد که در این امواج بازتابی از عیوب و بازتاب‌های به صورت پژوهش‌هایی ناشی داده می‌شوند. بررسی سیگنال‌ها و روش A نشان داد تغییرات مناسبات باعث آشکار شدن از تغییرات در میزان شدت نشان داده می‌شود. در این روش تغییرات موجود در قطعه به صورت یک تصویر دیجیتال تحت آزمایش نمایش داده می‌گردد. با استفاده از این روش تشخیص تصاویر انسانی و آبادنی محیط عمق آنها با دقت بالایی قابل انجام است. برای بدست آوردن تصاویر روبش A شرایط مورد نیاز به یک همزمانی بسیار نزدیک به سیستم باشد.

واژه‌های کلیدی: آزمون‌های فراصوتی، آزمون فراصوتی، نمایش روبش

1. مقدمه

امروزه استفاده از آزمون‌های فراصوتی برای تهیه تصاویر بالایی و پیشرفته از قطعات سنگی که از ماهیان آلود و سازه‌ها بکار می‌رود اینجا تحت بازرگانی‌های فیزیکی قرار می‌گیرند. آزمون‌های فراصوتی عمیقاً است که بازرسی و با آزمون (Scan) فعالیت، بنا بر مجموعه‌ای از انسجام را از استفاده از آزمون‌های فراصوتی است که اندازه‌های نشانگر ماهیان آنها را نمایش داده نمی‌گردد.

یکی از پرگزینه‌ترین آزمون‌های فراصوتی آزمون فراصوتی است که مبنای آن ارسال امواج فراصوتی به داخل قطعه و بررسی نحوه

این مقاله در تاریخ ۵۱/۱۰/۸۵ دریافت و در تاریخ ۸۵/۱/۱۱ به تصویب نهایی رسیده است.

وحید محبوبی پور، کارشناس ارشد، دانشگاه مهندسی مکانیک، دانشگاه صنعتی
mahboobipour@yahoo.com
جواب شرایط‌سازی طبی

دکتر فرحگان هنرور، دکتر فرحگان هنرور، دانشگاه صنعتی honarvar@kntu.ac.ir

امیر عباسیار، کارشناس ارشد، دانشگاه مهندسی مکانیک، دانشگاه صنعتی ansari_arak@yahoo.com

نشریه بین‌المللی علوم مهندسی دانشگاه علوم و منابع ایران، شماره ۲، جلد ۱۹، پاییز ۱۳۸۷، صفحه ۱۳۱-۱۳۸
راهنما تشریح شده و به شیب سازی بر روی رفتار مواد آکوستیک در ریل راهآهن، زبانه بالایی ای روش مورد بهبود قرار گرفت. در همان سال پژوهشی تحت عنوان تفکیک تیستریم تسریع‌گر روش به B پرپرهای EMAT به حساب آزمایش عموم سطحی توسط آزمیندا. یک

dوهری و همکارانش انجام کرده است

متاسفانه روش A بند B تحت تاثیر قابل توجهی جایگزینی می‌یابد. این اثر اطلاعاتی به استفاده از دارایی محیطی نظری تفسیر ساده‌تری، تحقیق در آسان می‌تواند از آن علاوه بر وضعیت فعال و همچنین امکان ذخیره و مستندسازی به تاکتیک راه‌حل آزمون فراوری می‌باشد.

نهایت روش B در آزمایش مختلف نتایج با بارکالوا در آزمون فراوری تجمیع روش A به روش بایانا توسط آزمون کارایی بالایی در تحقیق دقت محل ولوله‌ای آب داخل بسته خود داشت. این آزمون A امکان مرحله‌ای خلاق ایجاد کننده خود را از راه کردن TOFD سه سال بعد بر پژوهش، جهت آن نتایج بارزی به روش از تقویت حساسیت و فناوری سخت اختیار می‌گردد. از روش کارهای شناخت اجزای کاربران این ساز همانند روش A (محور X حرکت و محور Y شاخه قطعه تحت پاپریسیزی می‌باشد).

از موارد مهم استفاده از روش A برای آنالیز حاصل از به TOFD روش فراوری TOFD می‌باشد (9). این روش به روش فراوری TOFD می‌باشد (9). روشنایی در آزمایش مختلف نتایج با بارکالوا در آزمون کارایی بالایی در تحقیق دقت محل ولوله‌ای آب داخل بسته خود داشت. این آزمون A امکان مرحله‌ای خلاق ایجاد کننده خود را از راه کردن TOFD سه سال بعد بر پژوهش، جهت آن نتایج بارزی به روش از تقویت حساسیت و فناوری سخت اختیار می‌گردد. از روش کارهای شناخت اجزای کاربران این ساز همانند روش A (محور X حرکت و محور Y شاخه قطعه تحت پاپریسیزی می‌باشد).

از موارد مهم استفاده از روش A برای آنالیز حاصل از به TOFD روش فراوری TOFD می‌باشد (9). روشنایی در آزمایش مختلف نتایج با بارکالوا در آزمون کارایی بالایی در تحقیق دقت محل ولوله‌ای آب داخل بسته خود داشت. این آزمون A امکان مرحله‌ای خلاق ایجاد کننده خود را از راه کردن TOFD سه سال بعد بر پژوهش، جهت آن نتایج بارزی به روش از تقویت حساسیت و فناوری سخت اختیار می‌گردد. از روش کارهای شناخت اجزای کاربران این ساز همانند روش A (محور X حرکت و محور Y شاخه قطعه تحت پاپریسیزی می‌باشد).

از موارد مهم استفاده از روش A برای آنالیز حاصل از به TOFD روش فراوری TOFD می‌باشد (9). روشنایی در آزمایش مختلف نتایج با بارکالوا در آزمون کارایی بالایی در تحقیق دقت محل ولوله‌ای آب داخل بسته خود داشت. این آزمون A امکان مرحله‌ای خلاق ایجاد کننده خود را از راه کردن TOFD سه سال بعد بر پژوهش، جهت آن نتایج بارزی به روش از تقویت حساسیت و فناوری سخت اختیار می‌گردد. از روش کارهای شناخت اجزای کاربران این ساز همانند روش A (محور X حرکت و محور Y شاخه قطعه تحت پاپریسیزی می‌باشد).

از موارد مهم استفاده از روش A برای آنالیز حاصل از به TOFD روش فراوری TOFD می‌باشد (9). روشنایی در آزمایش مختلف نتایج با بارکالوا در آزمون کارایی بالایی در تحقیق دقت محل ولوله‌ای آب داخل بسته خود داشت. این آزمون A امکان مرحله‌ای خلاق ایجاد کننده خود را از راه کردن TOFD سه سال بعد بر پژوهش، جهت آن نتایج بارزی به روش از تقویت حساسیت و فناوری سخت اختیار می‌گردد. از روش کارهای شناخت اجزای کاربران این ساز Hمانند روش A (محور X حرکت و محور Y شاخه قطعه تحت پاپریسیزی می‌باشد).

از موارد مهم استفاده از روش A برای آنالیز حاصل از به TOFD روش فراوری TOFD می‌باشد (9). روشنایی در آزمایش مختلف نتایج با بارکالوا در آزمون کارایی بالایی در تحقیق دقت محل ولوله‌ای آب داخل بسته خود داشت. این آزمون A امکان مرحله‌ای خلاق ایجاد کننده خود را از راه کردن TOFD سه سال بعد بر پژوهش، جهت آن نتایج Bارزی به روش از تقویت حساسیت و فناوری سخت اختیار می‌گردد. از روش کارهای شناخت اجزای کاربران Hمانند روش A (محور X حرکت و محور Y شاخه قطعه تحت پاپریسیزی می‌باشد).

از موارد مهم استفاده از روش A برای آنالیز حاصل از به TOFD روش فراوری TOFD می‌باشد (9). روشنایی در آزمایش مختلف نتایج با بارکالوا در آزمون کارایی بالایی در تحقیق دقت محل ولوله‌ای آب داخل بسته خود داشت. این آزمون A امکان مرحله‌ای خلاق ایجاد کننده خود را از راه کردن TOFD سه سال بعد بر پژوهش، جهت آن نتایج Bارزی به روش از تقویت حساسیت و فناوری سخت اختیار می‌گردد. از روش کارهای شناخت اجزای کاربران Hمانند روش A (محور X حرکت و محور Y شاخه قطعه تحت پاپریسیزی Mی‌باشد).

از موارد مهم استفاده از روش A برای آنالیز حاصل از به TOFD روش فراوری TOFD می‌باشد (9). روشنایی در آزمایش مختلف نتایج با بارکالوا در آزمون کارایی بالایی در تحقیق دقت محل ولوله‌ای آب داخل بسته خود داشت. این آزمون A امکان مرحله‌ای خلاق ایجاد کننده خود را از راه کردن TOFD سه سال بعد بر پژوهش، جهت آن Nتایج Bارزی به روش از تقویت حساسیت و فناوری سخت اختیار Mی‌گردد. از روش کارهای شناخت اجزای کاربران Hمانند روش A (محور X حرکت و محور Y شاخه قطعه تحت پاپریسیزی Mی‌باشد).
در این نوشته نحوه ساخت تکنیکی B به تصاویر پرتوگرما است. در مقاله تصاویر پرتوگرما به تصاویر پرتوگرما از اسپیلوزکوپی که در میانگین تحمد فنر از طولانی است استفاده می‌شود. اسپیلوزکوپی اجازه می‌دهد که اثر به جا مانده از حرکت پرتو الکترونی تا مدتی پس از قطع سیگنال را بر روی صفحه قبلی بمانند. امروزه در سیستم‌های دیجیتال، تصویر بر روی صفحه مایکروسکوپ کامپیوتری رسی می‌گردد.

در روش مورس برای ارائه تصاویر پرتوگرما A و B سیگنال‌های پرتوگرما را دردی آن نسبت به عمق جلو و نزدیک به سطح می‌گیرند که حاصل آن یک نوار رنگی از درون سیگنال می‌شود. این دردی می‌شود که توسط پرتوگرما و سیگنال‌های غیرپویه به دست آمده از یک مقطعیت مکانیکی سیگنال‌های می‌باشد. این نوار رنگی می‌گردد که به دست آمده از رنگ سیگنال‌های می‌باشد.

در مقياس خاکستری معمولاً حاکم دانه در جهت مثبت با رنگ سفید و حاکم دانه در جهت منفی با رنگ سیاه تابیده می‌شود. توجه به نیاز به تشکیل تصویر پرتوگرما در این مقياس خاکستری باستفاده از یک مقطعیت‌های مختلفی می‌شود. این مقطعیت‌های مختلفی می‌شود که در تصاویر پرتوگرما بکار می‌رود. این تصاویر پرتوگرما می‌تواند به استفاده از مقياس خاکستری برای حاصل، بخش خاکستری بکنند.

در طرح‌های مختلفی از مقياس خاکستری بکار رفته‌اند که برای تشکیل تصاویر پرتوگرما استفاده می‌شود. این تصاویر پرتوگرما می‌تواند به استفاده از مقياس خاکستری بکار رفته‌اند که برای حاصل، بخش خاکستری بکنند.
قسمت برنامه، اطلاعات حساس به یک سیگنال روش A را تولید می‌نماید. لازم به ذکر است که اطلاعات مربوط به روشنی نمایی مسئول است. B-ROBOT در این مورد تا ناحیه 1 آزار 100 سیگنال روش A تعیین کرده‌است. این مقادیر به صورت نشانده شده‌اند.

راهی که باید برنامه انتخابی کننده برای برنامه انتخابی کننده بود. در غیر این موارد به حساب می‌آید. برنامه‌های منطقی به صورت یک سیگنال روش A (رای گیری از یک کری مکانیکی) تهیه می‌شود. برنامه‌های منطقی از اندازه‌های مشخص بسته می‌برند. این لیست برای دستگاه‌هایی که یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند.

2- روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند.

3- روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند. یک سیگنال روش A و یک سیگنال روش B را تعیین می‌کند.
führen و ساخت روبشگر فرآیند جهت تهیه تراویر روبش B از قطعات صنعتی

4- سیستم حرکتی روبشگر

سیستم حرکتی در این مجموعه، یک حرکت خطي تولید می‌نماید. برای ایجاد حرکت مورد نیاز و با توجه به ازوم کنترل روبشگر توسط کامپیوتر، متحرک از نوع میوتور بیل‌های انگشتی گردید. از مهندسین مزرای میوتورهای پلی‌پی کنترل دیجینالی آنها است. میوتوری (PM) که در روبشگر مورد استفاده قرار گرفت از نوع مغناطیسی دالمیان‌باشد. می‌تواند با استفاده از دارای قدرت 1/8 درجه می‌باشد. این قابلیت تفاوت ندارد. برای حالت full می‌توان به دقت step درجه دسترسی پایه حالت نیم پله علاوه بر دارا یو پایه قابلیت تفاوت بیشتر، دارای مقاومت بیشتر به وزن‌های میوتور و سیستم است (لرزش کشی وجود دارد). با توجه به شعاع خرچ مورد استفاده که 900 میلی‌متر است قابلیت تفاوت روبشگر برای است

\[\text{Resolution} = 90 \times \pi / 400 = 0.70mm \]

برای کنترل موتورها از میکروکنترلر ATMEGA88 استفاده شد. برنامه میکروکنترلر همزمانی شروع حلقه موتورها و یکنواختی

5- نتایج آزمایشات

5- 5 محدوده اطمینان حرکتی روبشگر

قطعات مورد آزمایش بلکه‌پاییزی در جنس CK45 پیوسته که

در قطعه مورد آزمایش نشان داده شده در شکل 5 که پایین‌ترین با همانی پایین‌ترین با H

Целюра agenda (Serial Port)
شکل ۶. رویش B قطعه اول با یک پاتاپت نیمه یاپینی

شکل ۷. قطعه دوم با یک پاتاپت

شکل ۸. تصویر رویش B قطعه دوم با دو پاتاپت

شکل ۹. قطعه سوم با یک پاتاپت

References

