انتخاب مناسب ترین ساختار برای بهبود قابلیت اعتماد سیستم با استفاده از فرآیند تحلیل شبکه‌ای (ANP)

حسن حاله و حسین گریمیان

چکیده:
در این مقاله مسئله بهبود قابلیت اعتماد سیستم به خصوص در مرحله طراحی و قبل از تولید مدیریت قرار گرفته است. راه حلی که پیشنهادشده است یک روش جدید برای بهبود ساختار برگزاری شد. برای بهبود قابلیت اعتماد سیستم در مرحله طراحی، از طریق اجرای مدل ANP نسبت به میزان مؤثر در مسیر انتخاب سیستمهای اسکلتی شبکه‌ای به عنوان یکی از تکنیک‌های فوق و برگار برای تصمیم گیری چندگانه می‌باشد.

کلمات کلیدی:
قابلیت اعتماد، تصمیم گیری چندگانه، فرآیند تحلیل شبکه‌ای (ANP)

1 مقدمه
انسان از زمانی که تولیدکننده را آگاه نموده، همواره تغییر گونگی کارکرد و اطلاعات از کارکرد صحیح و امین بودن ابزار و وسایل مورد استفاده خود بوده است. امروزه مجموعه اطلاعاتی که برای طراحی، تولید و کارکرد مناسب یک دستگاه یا یک سیستم انجام می‌گیرد، محدودیت قابلیت اعتماد (ANP) مطالعات انجام گرفته در زمینه قابلیت اعتماد را می‌توان به‌واسطه مقدمات

- بررسی توزیع‌های مورد استفاده در قابلیت اعتماد
- برآورد قابلیت اعتماد سیستم
- طراحی برای قابلیت اعتماد بیشتر
- گزینه

2 طرح

3.4 گزینه

4 گزینه

تاریخ و روایت: 88/12/14
تاریخ نما شده: 89/12/14
دکتر حسن حائی. استادیار دانشکده مهندسی صنایع و برنامه‌ریزی سیستمها.
hhaleh@cc.iut.ac.ir
دانشگاه صنعتی اصفهان، آئینی
حسین گریمیان. دانش آموخته کارشناسی ارشد مهندسی سیستم‌های اقتصادی
h.karimian@in.iut.ac.ir
و اجتماعی، دانشگاه صنعتی اصفهان، آئینی
2 - Reliability Engineering
3 - Guarantee
مسطحه افزایش قابلیت اعتماد سیستم با تخصیص ساختر و اجزای خاص به خصوص با اجزای اضافی همراهی از مهم‌ترین سیستم‌های قابلیت اعتماد داده‌ها، است. با توجه به مقتضیات اجرایی این مدل، هر اجزایهایی که به کار رفته در سیستم قابلیت اعتماد همراه با اجزای اضافی ساختر و اجزای خاص به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزای اضافی همراهی تجزیه و تحلیل می‌شود، می‌تواند به عنوان حساب‌رسانی‌هایی مانند ارزیابی اجزای به کار رفته در سیستم که به خصوص با اجزاء

- مورور بر پژوهش‌های پیشین

- AHP
- TOPSIS
- Utility Function
- Pareto Optimality
- Weighted Objective Function
- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
- Mettas
- Genetic Algorithm (GA)
- Redundancy Allocation
راه به طور کامل در نظر می‌گیرد و ساختار شبکه‌ای آن تا حدود
زاویه در دنباله ویژه به صورت نسبت به سایر وسایل موجود
مطابقت دارد.

3. تشریح مدل مورد استفاده

1. قابلیت استفاده

مقدار قابلیت استفاده مشترک می‌تواند به نظر بهترین مقدار بهترین نظر بهترین مقدار می‌باشد. قابلیت استفاده یک مودی (R^1) مشخص از یک موجود است که جزئیات انجام یا کار کرده با معین تحت شرایط

تعیین شده برای ایندکس مشخص شکسته می‌باشد. محاسبه قابلیت استفاده یک سیستم دارای فاکتور ایست که به ارائه اجزای آن به‌طور مشخص شده. به عنوان مثال در ارائه سری

(اژه‌ای) سیستم به صورت متغیر رابطه دارد و همه با دادی کننده

سیستم کار کننده قابلیت استفاده سیستم از رابطه زیر محاسبه

می‌شود:

\[R_i = R_1R_2...R_n \]

2. قابلیت استفاده اجزای آن است.

\[R_i = 1 - \prod_{j=1}^{n} (1-R_{ij}) \]

بعضی از سیستم‌ها ارائه‌شده دارند که در واقع تکمیلی از این دو

حالات است که به ارائه سری معرفی می‌باشد. یک رابطه کلی

برای محاسبه قابلیت استفاده این سیستم‌ها معرفی شده‌است که در

تاریخ ۲۱ آذر ۱۳۹۰...
فکتورهایمی که در مقاله مناس معرفی گردیده تعریف شده‌اند. فکتورهایی که در مقاله اصلی معرفی گردیدند، از محدوده کلی قابلیت اعتمادی کل سیستم استفاده شده‌اند.

\[
I = \frac{R_B}{R_i}
\]

که در آن \(R_B\) قابلیت اعتماد مورد نظر یا سیستم یا می‌باشد. به عنوان مثال، سیستمی که نسبت میانگین قابلیت اعتماد جزئی از تابع یا می‌باشد.

\[
S_i = \sum_{n=1}^{N} \frac{R_i}{\Sigma_i (n-a_i)}
\]

که در حقیقت نوعی میانگین سیستم به یک یا چند جزء خاص از سیستم مقدار گرفته‌اند. از این نسبت کسب می‌کنیم. گرایش ما به رابطه ماشینه می‌باشد. اگر میانگین تعیین تعیین می‌شود.

\[
c_i = a_i \ln \left(\frac{1 - R_{min}}{1 - R_i} \right)
\]

که در آن \(R_i\) میانگین مقدار اولیه (کوئی) قابلیت اعتماد و \(R_{min}\) میانگین سیستم مورد نظر یا سیستم یا از یک سیستم می‌باشد. به عنوان مثال، سیستمی که نسبت میانگین نسبت به یک یا چند جزء خاص از سیستم مقدار گرفته‌اند. از این نسبت کسب می‌کنیم. گرایش ما به رابطه ماشینه می‌باشد. اگر میانگین تعیین تعیین می‌شود.

\[
C = \sum_{i=1}^{n} \ln \left(\frac{R_i}{1-R} \right) + \ln \left(\frac{R_y}{1-R_y} \right)
\]

و یا در قرارداد مورد استفاده در این رابطه است. اگر میانگین تعیین تعیین می‌شود.

\[
E_i = \sum_{j=1}^{n} R_{ij}
\]

ویا این مقدار نسبت به یک یا چند جزء خاص از سیستم مقدار گرفته‌اند. از این نسبت کسب می‌کنیم. گرایش ما به رابطه ماشینه می‌باشد. اگر میانگین تعیین تعیین می‌شود.

\[1\] Analytic Network Process
\[2\] Thomas L. Saaty
هر یک از مجموعه‌ای از خوشه‌ها تشکیل شده است که هر خوشه شامل مجموعه‌ای از عناصر می‌باشد. به طور گلی دو نوع واگشتی اصلی در هر شیبک سیستم و توانایی باشند.

1. واگشتی سیستم خوشه‌ها به گونه‌ای که هر خوشه می‌تواند با خوشه‌های دیگر در سطح ترمیمی یکدیگر ارتباط و بازخورده باشد.

2. واگشتی سیستم خوشه‌ها به گونه‌ای که هر خوشه می‌تواند با تمامی عناصر موجود در گروه خوشه‌ها واگشتی داشته باشد و حیث عناصر دیگری که شیبک خوشه نیز می‌تواند با یکدیگر واگشتی داشته باشد.

گام دوم: انتخاب مالیات‌های جوی و استراحت بردارهای وزن نسبی.

مشابه فرآیند تحلیل سلسه‌مانی عناصر ترسیم در هر شیبی به نسبت اهمیت آنها نسبت به یک عامل کنترلی به صورت زوجی با یکدیگر مالیات‌های خوشه‌ها نیز به نسبت میزان آنها در دو راه شدن به دست آورد.

همچنین این‌ها در برابر این چند هدف با یکدیگر مقایسه می‌گردد.

و با استفاده از این مالیات‌های جوی و رفتارهای داخلی و اجرا در خوشه، تمامی عناصر خوشه‌های دارای واگشتی داخلی و متصل به هر نک که عناصر دیگر خوشه مربوط به خود جوی مورد مقایسه قرار می‌گیرند و مالیات‌های مختلف مشاهده می‌گردد، راه را پنهان می‌گیرد.

گام سوم: تشکیل ارتباطات برای محاسبه وزن نهایی در سیستم با اثاث و واگشتی، بردارهای وزن محیط در ستون‌های مختلف از مسایل و در مورد سیستم تحت عنوان ارتباطات C را داده می‌شود.

نتیجه ارتباطات حاصل می‌شود که هر دوی آن ماتریسی است که رابطه آنها را در سیستم نشان می‌دهد.

فرض کنید خوشه‌های پی سیستم ترسیم گیری را با دو عدد m و K خوشه‌هایی که هستند هکه در C

یکدیگر

می‌باشد. بردارهای وزنی که خوشه‌های گروه قرار گرفته در گام قبلی حاصل شده اند در جای مربوط به ارتباطات در این ماتریس بر اساس نوع واگشتی از یک خوشه به دیگری یا با یک خوشه به خودش قرار داده می‌شود. رابطه شماره یک از ماتریسی را در حالت کلی نشان می‌دهد.

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\]

شکل 1. سیستم مورد بررسی در مقاله متناس[9]

2. - Limited Super Matrix

3. - Super Matrix
جدول ۱. مقایسه عددی معمولاً برای هفت گزینه ANP

<table>
<thead>
<tr>
<th></th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>۰.۳۰۰</td>
<td>۰.۳۰۱</td>
<td>۰.۱۰۰</td>
<td>۰.۳۰۰</td>
<td>۰.۲۳۰</td>
<td>۰.۲۳۰</td>
<td>۰.۲۳۰</td>
</tr>
<tr>
<td>R</td>
<td>۰.۳۰۰</td>
<td>۰.۲۵۰</td>
<td>۰.۲۵۰</td>
<td>۰.۶۰۸</td>
<td>۰.۶۰۸</td>
<td>۰.۶۰۸</td>
<td>۰.۶۰۸</td>
</tr>
<tr>
<td>S</td>
<td>۰.۱۶۶</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۸۱</td>
<td>۰.۰۸۱</td>
<td>۰.۰۸۱</td>
<td>۰.۰۸۱</td>
</tr>
<tr>
<td>E</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۸۱</td>
<td>۰.۰۸۱</td>
<td>۰.۰۸۱</td>
<td>۰.۰۸۱</td>
</tr>
<tr>
<td>۱</td>
<td>۰.۱۲۴</td>
<td>۰.۰۴۴</td>
<td>۰.۰۳۵</td>
<td>۰.۲۰۴</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۰۸۴</td>
<td>۰.۰۵۳</td>
<td>۰.۰۲۳</td>
<td>۰.۲۰۴</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۱۷۱</td>
<td>۰.۰۲۱</td>
<td>۰.۰۸۲</td>
<td>۰.۲۰۴</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۱۵۸</td>
<td>۰.۰۲۴</td>
<td>۰.۰۵۵</td>
<td>۰.۲۰۴</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۰۴۳</td>
<td>۰.۰۴۰</td>
<td>۰.۰۳۳</td>
<td>۰.۰۷۵</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
</tr>
<tr>
<td>۶</td>
<td>۰.۰۳۲</td>
<td>۰.۱۲۴</td>
<td>۰.۱۴۲</td>
<td>۰.۰۷۵</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
</tr>
<tr>
<td>۷</td>
<td>۰.۰۱۷</td>
<td>۰.۲۱۸</td>
<td>۰.۳۷۴</td>
<td>۰.۰۳۵</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
<td>۰.۰۰۰</td>
</tr>
</tbody>
</table>
انتخاب مناسب‌ترین ساختار برای بهبود قابلیت استفاده سیستم با استفاده از فرآیند

سiton پنجم تا یازدهم ماتریس گویای این مطلب است که با هدف واقع شدن هر کدام از گزینه‌ها میزان اهمیت معیارها برای همه آنها یکسان بوده و به این ترتیب می‌باشد. قابلیت اعتبار در مقام اول اهمیت قرار دارد، هر چه در مقام دوم و بعد از آن دو معیار اهمیت و میزان مصرف ارزی در اهمیت یکسان می‌باشند. اما برای تشخیص اولویت گزینه‌ها و انتخاب بهترین ساختار از بین هفت سیستم این ایرادات می‌باشد که در هر شرایط مورد بررسی در حالت غیر یکسانی برای گزینه‌ها ضروری گردید.

ستون‌های مختلف آن ارزانی یکسان برای گزینه‌ها ظاهر گردید.
جدول ۲. ماتریس حذف شائلم و راه‌های نهایی

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.186</td>
<td>0.186</td>
<td>0.186</td>
<td>0.186</td>
<td>0.186</td>
<td>0.186</td>
<td>0.186</td>
</tr>
<tr>
<td>R</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
</tr>
<tr>
<td>S</td>
<td>0.084</td>
<td>0.084</td>
<td>0.084</td>
<td>0.084</td>
<td>0.084</td>
<td>0.084</td>
<td>0.084</td>
</tr>
<tr>
<td>E</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
</tr>
<tr>
<td>۱</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>۲</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
</tr>
<tr>
<td>۳</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
</tr>
<tr>
<td>۴</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>۵</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>۶</td>
<td>0.060</td>
<td>0.060</td>
<td>0.060</td>
<td>0.060</td>
<td>0.060</td>
<td>0.060</td>
<td>0.060</td>
</tr>
<tr>
<td>۷</td>
<td>0.106</td>
<td>0.106</td>
<td>0.106</td>
<td>0.106</td>
<td>0.106</td>
<td>0.106</td>
<td>0.106</td>
</tr>
</tbody>
</table>

نتیجه اصلی، اولویت‌بندی ساختارهای مختلف می‌باشد که به‌دين

5. بحث و نتیجه‌گیری

نتیجه‌گیری اولویت‌بندی ساختارهای مختلف می‌باشد که به‌دين

ترتب است:

- سیستم شماره ۷
- سیستم شماره ۶
- سیستم شماره ۵
- سیستم شماره ۴
- سیستم شماره ۳
- سیستم شماره ۲
- سیستم شماره ۱
- سیستم شماره ۰

در مطالعات پیشین تاکنون انتخاب ساختار مناسب از بین چندین
ساختار مختلف (به تعداد ۱۳) انجام نشده است. در این تحقیق با

بررسی این گونه سلسل ناتایج مفیدی حاصل شد.

ازجمله این‌که تغییر ساختار در سیستم موردنظر بايد با بررسی
جوانب کار انجام شود. به‌طور مثال افرادی که به جزه بسیار
tوانسته مثبت با شدت باند، اما با برای افراد از این چگونگی
تغییر به‌هویتی یک جزه تا مقدار از قابلیت‌های می‌تواند مثبت باشد و این که
استفاده از عنصری می‌توانید قابلیت‌های بی‌نیاز (باکتری) در چه
قسمتی از ساختار سیستم از کار خواهد شد.

تعیین می‌باشد مختلف در کانال قابلیت‌بندی که حالت اهمیت
هستند به‌عنوان اولویت ساختارهای مختلف مشترک را با جزه که
در ابتدا (میان‌بازار دادن قابلیت‌بندی با پیش‌اندازه) به نظر می‌آید
کامل متفاوت سازد. به عنوان مثال اضافه کردن معیاری مانند

...

اما افزودن یک جزه به سیستم به طور کلی افزایش قابلیت‌بندی در

آن سیستم را یافته که دو افزایش اهمیت

فرایند دارد. به عوامل می‌تواند باعث تغییر که سیستم شماره ۵ با

سیستم شماره ۴ دارد داشته که جزه اضافه کردن

کار جزء شماره ۴ است. اما اضافه شده‌شد سیستم شماره ۵

علیرغم افزایش کمی که در قابلیت‌بندی نسبت به سیستم شماره

۴ دارد کمترین وزن را به دریافت از کلیه که سیستم

شماره ۴ رتبه اول را کسب کرده است.
زبانی ظاهری دستگاه مورد بررسی می‌تواند نتایج حاصله‌ای تحت تأثیر قرار دهد. بنابراین باید در تعیین معیارها دقت فراوان نمود.

6 پیشنهاد‌ها

این گونه تحقیق‌ها می‌توانند در یک کارگری مبنا و مقایسه نظری قابلیت استفاده در عالم واقعیت و در عمل مفید باشند. در این راستا پیشنهاد می‌شود برای پژوهش‌های آینده در نظرگرفتن شرایط که می‌تواند به بهبود کیفیت این مقاله و ادامه این تحقیقات کمک کند، پیشنهاد به استفاده از یک روش بهینه‌سازی گروهی می‌گردد.

در این گروه شاید کلیدی این موضوع فقط تغییر ساختار بررسی سخت‌سازی می‌تواند تغییر در ساختار و بهبود اجزای سیستم را به‌طور همزمان در نظر گرفته سیستم به همراه کند. می‌توان با مقایسه روش‌های بهره‌برداری از روش‌های مختلف (مانند برنامه‌ریزی آینده، بهینه‌سازی پارتو و الگوریتم زندگی) روی جواب‌ها مشترک مرکزکرده و از این آنها ساختار نهایی را برای سیستم انتخاب نمود.

برای تعیین معیارهای کیفی به‌عنوان مثال زبانی ظاهری دستگاه مورد نظر محاسبات مورد استفاده تکنیک‌های مختلف که شامل تغییر در این مقاله می‌تواند براساس مراحل و معایب تکنیک‌های معرفی شده، استفاده از سیستم بهینه و دادن اطلاعات مناسب به آن، یک روش بکر برای حل مسئله بگردد. به‌طور جامعه‌ای این مقاله روی یک مطالعه موردی و با داده‌های موقعی نتایج ملموس تری به‌دست خواهد آمد.

منابع

