انتخاب مناسب‌ترین ساختار برای بهبود قابلیت اعتماد سیستم با استفاده از فناوری تحلیل شبکه‌ای (ANP)

حسن حالی و حسین کریمیان

چکیده:
در این مقاله سیستم به خصوص در مراحل طراحی و قبل از تولید منظور قرار گرفته است. راه حلی که پیشنهاد شده است باید این مطلب که ساختار برگزیده برای تولید باید در واقعیت قابل کاربرد باشد شکل گرفته است. بدین ترتیب که ساختارهای ممکن برای سیستم منظور طراحی شده، مورد بررسی قرار می‌گیرند. سپس از بین آنها گزینه مناسب برای تولید برگزیده می‌شود. روشن که برای اینکه انتخاب گزینه مناسب تحلیل شبکه‌ای به عنوان یکی از تکنیک‌های فوق و برگار برای تحلیل شبکه‌ای چندشاخصه می‌باشد.

کلمات کلیدی:
قابلیت اعتماد، تصمیم‌گیری چندضدیمی، فناوری تحلیل شبکه‌ای (ANP)

1. مقدمه
انسان از زمانی که تولید گردیدن را اغاز نموده، همواره نگار چگونگی کارکرد و اطمینان از کارکرد صحت و امین بودن ابزار و وسایل مورد استفاده خود بوده است. امروزه مجموعه عناصری که برای طراحی، تولید و کارکرد مناسب یک دستگاه و یا یک سیستم انجام می‌گیرد، مهندسی قابلیت اعتماد یا انرژی سیستم (1:
مطلاع‌ات انجام‌گرفته در زمینه قابلیت اعتماد را می‌توان به چند دسته زیر تقسیم کرد:

1- بررسی توپولوژی مورد استفاده در قابلیت اعتماد
2- برآورد قابلیت اعتماد سیستم
3- طراحی برای قابلیت اعتماد بیشتر
4- گزارش

تاریخ وصول: 1288/12/18
تاریخ دریافت: 1387/10/30

2- Reliability Engineering
3- Guarantee
مسلسل افزایش قابلیت اعتماد سیستم با تخصیص ساختار و اجزای
خاص به خصوص از اجزای اصلی مهاره‌های از مهارتین سیستم
مهم‌ترین قابلیت‌اتمام دارد. بنابراین، کمک‌های اجرای
اطلاعی (که در واقع به گونه‌های مانند تغییر‌اتخاوت سیستم می‌باشد)
به سطح NP-hard الیک آمده و کلید اجرای اجرا
درین‌گرایش به سیستم‌گرایی ابتکاری زنیک برای تحلیل
و تغییر ساختار و ترکیب بهینه برای سیستم‌های سری‌وزی
است داده شده است.

است که اگر در ساختار داده‌های که به دست می‌آید در عالم واقعی
c
قابل کاربرد باشد با ساختاری که ممکن است مفاد‌پذیر باشد به
دلیل زیاد بدنی از ساختارهای جزء پایه‌ای متغیر شامل
باشد، ممکن است می‌تواند ساختاری که می‌باشد در واقع ممکن
شود که ابتدا به دین داشت خصوصیات مشابه دیگر که
می‌تواند مفید باشد در طراحی سیستم برای انتخاب بهترین
گزینه از بین أنواع سیستم‌ها از روش‌های تخصیص گیری دیده‌چشم‌
استفاده گردد. برای این منظور، نیاز به تحلیل شیکایت‌های توصیه
می‌شود چراکه این روش‌ها در موارد مختلف و مربوط به سیستم‌ها

1. Analytical Hierarchical Process (AHP)
2. Goal Programming
3. Utility Function
4. Pareto Optimality
5. Weighted Objective Function
6. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
7. Metta
لا يمكنني قراءة النص العربي بشكل صحيح. يرجى الرجوع إلى النص الأصلي إذا كنت بحاجة إلى مساعدة في شيء آخر.
فکتورهایی که در مقاله مناس برای معرفی گرفته می‌شوند:

\[f_i = \frac{\beta_{ij} R_j}{R_i} \]

\[S_i = \sum_{j=1}^{n} \left(\frac{\beta_{ij}}{\sum_{k=1}^{n} \beta_{ik}} \right) \]

که در آن:

\[a_i = \ln \left(\frac{1 - R_{\text{min}}}{1 - R_i} \right) \]

که در آن:

\[R_j = \text{مقدر اولیه (کوئینی گیبلی-اعتماد و میزان قابلیت اعتماد مورد نظر برای سیستم i و وسیعه ای جز i از یک سیستم مشابه)} \]

\[a_i > 0 \]

\[\sum_{i=1}^{n} a_i \ln \left(\frac{1 - R_{\text{min}}}{1 - R_i} \right) \]

\[C = \sum_{i=1}^{n} \ln \left(\frac{R_i}{1 - R_i} \right) + \ln \left(\frac{R_j}{1 - R_j} \right) \]

\[\text{میزان مصرف انرژی} \]

\[\text{مشخصه دیگری که به خصوصیات توجه به اهمیت منابع انرژی در دنیای امروز، به‌ویژه در سیستم‌های برق، نقش می‌بازد.} \]

\[E_i = \sum_{j=1}^{n} R_j \]

\[\text{ساختار شبکه} \]

\[\text{یکی از تکنیک‌های تصحیح‌گری چندچندفاکتورهای است که تحت پوشش ساده برای پایه‌گذاری تحلیل سلسله مراتب و به مانور ارتقای مقیاسی یکی از تکنیک‌های سال 1994 معرفی گردید.

که در این سیستم به شرح داده شد در نهایت مدل در این گام نرسیده است تا تجزیه می‌گردد.

\[\text{تقریب روش تحلیل شبکه ANP} \]

\[\text{فراخواندن تحلیل شبکه‌های Ya} \]

\[\text{تحلیل شبکه‌های Ya} \]

\[\text{به منظور ارتقای مقیاسی این تکنیک در سال 1994 معرفی گردید.} \]

\[\text{یکی از تکنیک‌های تصحیح‌گری چندچندفاکتورهای است که تحت پوشش ساده برای پایه‌گذاری تحلیل سلسله مراتب و به مانور ارتقای مقیاسی یکی از تکنیک‌های سال 1994 معرفی گردید.

که در این سیستم به شرح داده شد در نهایت مدل در این گام نرسیده است تا تجزیه می‌گردد.

\[\text{تقریب روش تحلیل شبکه ANP} \]

\[\text{فراخواندن تحلیل شبکه‌های Ya} \]

\[\text{تحلیل شبکه‌های Ya} \]

\[\text{به منظور ارتقای مقیاسی این تکنیک در سال 1994 معرفی گردید.} \]
همان‌گونه و با وجود وابستگی این گروه نمایشگر بسیاری ترکیبی که در قسمت سوم نشان داده شده است که هر خوشه شماره یک مجموعه از خوشه‌های ترکیب است گروهی که به‌طور کلی به نوع وابستگی اصلی در سه شماره می‌تواند نهایت به‌دست آید.

1. وابستگی سیان خوشه‌ها به گونه‌ای که هر خوشه می‌تواند با خوشه دریگ در هر سطح تصمیم‌گیری دارای ارتباط متقابل و بارخوردار نباشد.

2. وابستگی سیان خوشه‌ها به گونه‌ای که هر خوشه در هر خوشه می‌تواند با تمام یک نوع با منشا درون یک خوشه نیز می‌تواند با یک‌دیگر وابستگی داشته باشد.

3. این دوم انجام مقایسات زوجی و انتخاب بردارهای وزن‌تیپ مشابه فرانکین حمله سلسله مرتبی عناصر تصمیم در هر خوشه به نسبت الهام آنها نسبت به یک عامل کنترلی بر روی زوجی با میزان خوشه‌های نزدیک به نسبت میزان بهترین آنها در یک‌دیگر مقایسه می‌گردد. همگان به منظور استفاده بردارهای اولیت (زن) مبتنی بر وابستگی داخلی عناصر خوشه‌ها و همچنین وابستگی‌های شما عناصر خوشه‌ها به دارایی وابستگی داخلی و متقابل به نسبت کن عناصر دیگر خوشه مربوط به صورت زوجی مورد مقایسه قرار می‌گیرند. ماتریس‌های مختلف مشاهده شده را تحلیل می‌دهد. بعد از اجرای ماتریس مقایسه زوجی می‌توان وزن‌های نسبی را محسوس نمود.

4. اثرات مثال

مثال زده که در این قسمت ارائه می‌شود با مانند قرارداد سیستم بررسی شده در مقاله‌های مختلف و هم‌گوناگر که در شماره 1 قابل مشاهده است. طرحی خواهد بود. ببین ترتیب که با عمل تغییراتی در ساختار سیستم مذکور، هفته سیستم مختلف ایجاد شدند. شکل 2 ساختارهای مختلف را نشان می‌دهد. مقادیر میزان درخت باره یک خوشه (ساختار) محاسبه و در چند شماره 1 اورده شده است.

مدل ارائه شده قابلیت‌های مربوط به سیستم مختلف تغییر یافته بهبود قابلیت‌عامه در اردهام این مدل تغییر ساختار می‌تواند است. لذا به‌طور کلی نشان داده شده که تغییر ساختار برای مشاهده میزان خوشه می‌تواند که به‌طور کلی بازارهای این سیستم مربوطه و دارای قابلیت‌عامه در 90% بیشتر می‌باشد. مقدار هرکدام از موارد نیز به‌طور مشابه که در بخش پیش توضیح داده شده محاسبه شده است.

بنابراین ماتریس مقایسه زوجی که به‌طور مشابه به این مقاید ترکیب یافته‌اند، یک ماتریس کم‌کم خوشه‌ی ساده‌شده است.

\[m = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \]

\[W_k = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{bmatrix} \]

در این ابر ماتریس بردار وزن مربوط به رابطه بین خوشه A و خوشه یک باشد. هرگاه که بین دو خوشه...
جدول 1: مقدار عددی معيارها برای هفت گزینه

<table>
<thead>
<tr>
<th>شماره</th>
<th>نظر</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>قابلیت اعتماد</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>هزینه</td>
<td>0.38</td>
<td>0.42</td>
<td>0.44</td>
<td>0.32</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>3</td>
<td>ایمنی</td>
<td>0.31</td>
<td>0.32</td>
<td>0.32</td>
<td>0.31</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>مصرف ارزی</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
</tr>
</tbody>
</table>

جدول 2: امکانات مربوط به مثلث

<table>
<thead>
<tr>
<th>شماره</th>
<th>C</th>
<th>R</th>
<th>S</th>
<th>E</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.310</td>
<td>0.000</td>
<td>0.000</td>
<td>0.230</td>
<td>0.230</td>
<td>0.230</td>
<td>0.230</td>
<td>0.230</td>
<td>0.230</td>
<td>0.230</td>
</tr>
<tr>
<td>2</td>
<td>0.370</td>
<td>0.000</td>
<td>0.256</td>
<td>0.000</td>
<td>0.608</td>
<td>0.608</td>
<td>0.608</td>
<td>0.608</td>
<td>0.608</td>
<td>0.608</td>
<td>0.608</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.166</td>
<td>0.000</td>
<td>0.000</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
<td>0.081</td>
</tr>
<tr>
<td>5</td>
<td>0.124</td>
<td>0.044</td>
<td>0.035</td>
<td>0.204</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.084</td>
<td>0.053</td>
<td>0.023</td>
<td>0.024</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>0.171</td>
<td>0.021</td>
<td>0.082</td>
<td>0.024</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.158</td>
<td>0.024</td>
<td>0.055</td>
<td>0.204</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>0.043</td>
<td>0.040</td>
<td>0.033</td>
<td>0.075</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>0.032</td>
<td>0.124</td>
<td>0.142</td>
<td>0.075</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>0.017</td>
<td>0.218</td>
<td>0.374</td>
<td>0.035</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

همان‌طور که مشاهده می‌شود در سطوح مربوط به معمار هزینه، قابلیت اعتماد که نشان می‌دهد چگونه بر اساس مقدار میزان انرژی، دانش می‌تواند به حساب می‌آید. در ضمن، هزینه نیز سیستم شماره 3 کمترین هزینه سیستم شماره 7 و سیستم دیگر انرژی را به دنبال داشته و به ترتیب بیشترین و کمترین وزن را به خود گرفتند. با استفاده از سیستم شماره 1 تا 7 برای این ایده، با توجه به آوران سیستم‌های مادرن، این چهار سیستم وزن بیشتر دارد و سیستم شماره 7 کمترین وزن را دارا می‌باشد.
سنیون پنجم تا یازدهم ماتریس گویای این مطلب است که با هدف واقع شدن هر کدام از گزینه‌ها میزان اهمیت معیارها برای همه آنها یکسان بوده و به این ترتیب می‌باشد، قابلیت اعتماد در مقام اول اهمیت قرار دارد، هرچند در مقام دوم و بعد از آن دو معیار اهمیت و میزان مصرف ارزی دارای اهمیت یکسان می‌باشند. اما برای تشخیص اولویت گزینه‌ها و انتخاب بهترین ساختار از بین هفت سیستم این امکان می‌باشد. در ضمن برای گزینه‌ها ژانری گردید.

شکل 2. ساختارهای مورد بررسی در مثال
جدول ۳. ماتریس حاصل مساحت وزن‌های نهایی

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>R</th>
<th>S</th>
<th>E</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>۰.۱۸۶</td>
</tr>
<tr>
<td>R</td>
<td>۰.۳۲۰</td>
</tr>
<tr>
<td>E</td>
<td>۰.۰۳۱</td>
</tr>
<tr>
<td>۱</td>
<td>۰.۰۴۶</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۰۴۱</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۰۵۲</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۰۴۸</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۰۲۶</td>
</tr>
<tr>
<td>۶</td>
<td>۰.۰۶۰</td>
</tr>
<tr>
<td>۷</td>
<td>۰.۱۰۶</td>
</tr>
</tbody>
</table>

۵. بحث و نتیجه‌گیری

نتیجه‌گیری اصلی اصولی، اولویت‌بندی ساختارهای مختلف می‌باشد که بدن ترتیب است. شماره ۱-۷

۱. سیستم شماره ۷
۲. سیستم شماره ۶
۳. سیستم شماره ۵
۴. سیستم شماره ۴
۵. سیستم شماره ۳
۶. سیستم شماره ۲
۷. سیستم شماره ۱

اما افزودن یک جزء به سیستم به طور کلی افزایش قابلیت اعتماد در آن سیستم را نمی‌نماید. این امر به‌طور کلی نشان می‌دهد که از جهت اعتماد، قابلیت اعتماد در ۲ درصد نسبت به سیستم شماره ۲ در ۴ درصد نسبت به سیستم شماره ۵ افزایش می‌یابد. اما این افزایش به‌روسی به‌طور کلی افکار نخواهد کرد.

منابع

