روش بالادست چندبعدي بر اساس مشخصه‌ها برای تحلیل جریان تراکم

نادییر داخل حفره

کامیار زمزمیان، سید اسماعیل رضوی و احمد فرزدقی

چکیده: در این تحقیق، یک روش جدید بالادست دوی‌بندی کامل بر مبنای مشخصه‌های چندبعده معاویدات تراکم نادییر ناوبری- استوکس ارائه شده است. معاویدات تراکم نادییر با استفاده از روش تراکم پذیری مصنوعی تصحیح شده و معاویدات پیش‌گوئی و مومنتی به یکدیگر کوپل شده‌اند. برخلاف طرح‌های محسوب‌شده موجود برای مشخصه‌های جریان‌های تراکم نادییر (CB)، که همگی با فرض یک بعدی بودن جریان در چهار ماده بر مز مهرک دو سل سل نهادند شده‌اند، روش حاضر برای مشخصه‌های کاملاً دوی‌بندی جریان است و از هیچ‌کنون فرض ساده کندل‌اف استفاده نمی‌کند. ساختار مشخصه‌های دوی‌بندی معاویدات تراکم نادییر با تصحیح تراکم پذیری مصنوعی برای أولین بار با استفاده از تحلیل رایجی به دست آمده و از آن برای ایجاد یک طرح محسوب‌شده بالادست برای مشخصه‌ها برای جریان‌های تراکم نادییر از استفاده شده است. طرح محسوب‌شده بالادست توسط MCB (multidimensional characteristic based) محسوب‌بردارهای شار جابجایی در این روش، به کار برده شده است. با استفاده از روش حاضر، جریان دوی‌بندی تراکم نادییر پایا داخ حفره در محصول سبیع از اعداد رنولدز مورد تحلیل قرار می‌گیرد. نتایج به دست آمده حاکی از اینکه در هر شکل مربوط اول و مربوط به دوم از طرح‌های محسوب‌شده بالادست S7CB نتایج دقیق‌تر را ارائه می‌دهد. روش پیشنهادی در شکل مربوطه دوم، همچنین با طرح محسوب‌شده بالادست، که همراه استفاهه اضافه‌کردن لجت مصنوعی برای پایدار ساختن حل نیز مورد مقایسه قرار گرفته است. علی‌رغم این مطالعه که طرح مترکی در این حالت دایر قرار گرفته و دوم محسوب‌شده بالادست، این طرح که می‌تواند در شکلی بسیار به کار برده شود با استفاده از مروب بالادست ارائه شده برای محسوب‌بردارهای شار جابجایی در روست حجم محدود، نیازی به اضافه کردن لجت مصنوعی و محسوب‌بردارهای شار جابجایی در روست حجم محدود، نیازی به اضافه کردن لجت مصنوعی نکه در اعداد رنولدز بالا به یابد و روش خال کاملاً بالادست است. مزیت CB چشمگیر دیگر طرح محسوب‌شده بالادست MCB نرخ همگرایی سریع آن در مقایسه با روست‌ها (که نرخ همگرایی کننده آن در اعمال فن به دفتار ذکر شده است) و طرح مجزی می‌باشد. در نهایت نتایج به دست آمده با استفاده از طرح MCB دو مرتبه دوم در نتایج متعدد موجود در ادبیات فن مورد مقایسه قرار گرفته است که در تمامی موارد توانایی پیسی خوبی بین آنها مشاهده می‌شود.

واژه‌کلیدی: جریان تراکم نادییر، تراکم پذیری مصنوعی، معاویدات ناوبری- استوکس، مشخصه‌های

چندبعده، روابط سازگاری، بیضی ماخ

امن مقایسه در تاریخ ۱۳۹۸/۰۶/۱۱ به تصویب نهایی رسیده است.

K_zamzamian@yahoo.com
Razavi@ubirzu.ac.ir
Afarzadi@yahoo.com

دانشکده فنی و مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تبریز.

دانشگاه مهندسی مکانیک، دانشگاه تبریز.

دانشگاه تبریز.
1. مقدمه

مفهوم تراکم پذیری مصنوعی (Artificial compressibility) یا به‌منظور حل بافت‌های معادلات ناویدل (Chorin) و (Drikakis) استوار تراکم پذیری ابتدای دش [11] با استفاده از نشان‌دهنده تراکم پذیری (time) و مفهوم برای ایجاد اکسان روش زمان‌بندی (space-marching) روش پذیری مصنوعی (Artificial compressibility) که برای کوپکول مدل شدن و معادلات از ماهمیت بسیار بده خواهی که در معادلات پذیری مصنوعی به صورت کمک درجه جریان‌های واقعی تراکم ناپذیری حس می‌شود. انتخاب برخی از روش‌های تراکم پذیری مصنوعی تاکید بر جریان‌های ناپذیری و تجربه ماهمیت دارد. این روش مفهوم و فرضیات مصرفی‌های مصنوعی در هنگام تحلیل تراکم ناپذیری مصنوعی (Artificial compressibility) را برای تجزیه معادلات تراکم پذیری مصنوعی استفاده قرار می‌دهد.

2. جاداری معادلات تراکم پذیری مصنوعی روی (Roe) تکانه ارائه شده بر حسب رشته (Mach)

برای (Mach) یا برای (Mach) از (Mach) استفاده می‌شود. این روش مفهوم و فرضیات مصرفی‌های مصنوعی در هنگام تحلیل تراکم ناپذیری مصنوعی (Artificial compressibility) را برای تجزیه معادلات تراکم پذیری مصنوعی استفاده قرار می‌دهد.

3. تحقیق واقعیت نیاز به مشخصه (difference splitting)

در این مطالعه، برای حل معادلات تراکم پذیری مصنوعی، روی (Roe) استفاده می‌شود. مدل (Roe) استفاده از نشان‌دهنده تراکم پذیری (time) و مفهوم برای ایجاد اکسان روش زمان‌بندی (space-marching) روش پذیری مصنوعی (Artificial compressibility) که برای کوپکول مدل شدن و معادلات از ماهمیت بسیار بده خواهی که در معادلات پذیری مصنوعی به صورت کمک درجه جریان‌های واقعی تراکم ناپذیری حس می‌شود. انتخاب برخی از روش‌های تراکم پذیری مصنوعی تاکید بر جریان‌های ناپذیری و تجربه ماهمیت دارد. این روش مفهوم و فرضیات مصرفی‌های مصنوعی در هنگام تحلیل تراکم ناپذیری مصنوعی (Artificial compressibility) را برای تجزیه معادلات تراکم پذیری مصنوعی استفاده قرار می‌دهد.
روش بایاد است چندبعدی بر راساس مشخص‌های تأثیر تراکم ناپایدار داخل حفره

گستن سازی مفاهیم تراکم ناپایدار تصحیح شده با روش تراکم ناپایدار مفاهیمی ارائه شده است. طرح محاسباتی ارائه شده برای تحلیل جریان تراکم ناپایدار پایای داخل حفره در اعداد رهنورد بالا مورد استفاده قرار گرفته و نتایج به دست آمده از روش پیش‌بینی‌های با نتایج حاصل از طرح‌های مرسوم CB و مانگکین گیری مزدی مورد مقایسه قرار گرفته است.

مقدمه

در واقع مشخص‌های متناوب منطقه‌ای (pseudo-pathline) در خطوط جریان مجازی سیال (pseudo-acoustic) دوم (5) منطقه‌ای با موج‌های اکوستیک مجازی دوم مشخص شده در میدان جریان سیال تراکم ناپایدار هستند. با استفاده از روابط (5) و کمی عضای ریاضی می‌توان نشان داد که مفاهیم تراکم ناپایدار می‌تواند به راه‌های اکوستیک مجازی نمودار شود.

\[
\begin{align*}
\frac{dx}{dt} &= u - \beta \cos \phi, \\
\frac{dy}{dt} &= v - \beta \sin \phi \\
\end{align*}
\]

(7)

گستن سازی مفاهیم تراکم ناپایدار تصحیح شده با روش تراکم ناپایدار مفاهیمی ارائه شده است. طرح محاسباتی ارائه شده برای تحلیل جریان تراکم ناپایدار پایای داخل حفره در اعداد رهنورد بالا مورد استفاده قرار گرفته و نتایج به دست آمده از روش پیش‌بینی‌های با نتایج حاصل از طرح‌های مرسوم CB و مانگکین گیری مزدی مورد مقایسه قرار گرفته است.

مقدمه

در واقع مشخص‌های متناوب منطقه‌ای (pseudo-pathline) در خطوط جریان مجازی سیال (pseudo-acoustic) دوم (5) منطقه‌ای با موج‌های اکوستیک مجازی دوم مشخص شده در میدان جریان سیال تراکم ناپایدار هستند. با استفاده از روابط (5) و کمی عضای ریاضی می‌توان نشان داد که

\[
\begin{align*}
\frac{dx}{dt} &= u - \beta \cos \phi, \\
\frac{dy}{dt} &= v - \beta \sin \phi \\
\end{align*}
\]

(7)

(8)

با توجه به روابط (4) می‌توان دریافت که مشابه با معادلات اولیر تراکم ناپایدار در این مورد نیز دسترسی به معادلات روبرهای مانند در فضا-زمان منطقه‌ای برحسب سیال ایجاد می‌شود. صحبت می‌ماند برای محاسبه تکامل دو جک مان را می‌دهد که در طرفین نقطه نهاد نظیر کریستال ساختار و محدوده تاثیر (Domain of dependence, Domain of influence) آن نقطه را تکامل می‌دهد (شکل 1).

\[
\begin{align*}
\frac{\partial p}{\partial t} + \beta \frac{\partial u}{\partial x} + \beta \frac{\partial v}{\partial y} &= 0 \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial p}{\partial x} &= 0 \\
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} &= 0 \\
\end{align*}
\]

(1)

(2)

در روابط بالا با توجه به معادلات (1) با فرضیات قطار دادن دتکس‌های ضریب در رابطه (2) به صورت زیر تعریف می‌شود:

\[
\psi = \frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + \frac{\partial f}{\partial x} = 0, \\
\psi = \beta \left(f_x^2 + f_y^2 \right) / f_x \\
\psi = \beta \left(f_x^2 + f_y^2 \right) / f_x \\
\psi = \beta \left(f_x^2 + f_y^2 \right) / f_x \\
\psi = \beta \left(f_x^2 + f_y^2 \right) / f_x \\
\psi = \beta \left(f_x^2 + f_y^2 \right) / f_x \\
\psi = \beta \left(f_x^2 + f_y^2 \right) / f_x
\]

(4)

(5)

\[
\begin{align*}
\frac{dx}{dt} &= u - \beta \cos \phi, \\
\frac{dy}{dt} &= v - \beta \sin \phi \\
\end{align*}
\]

(7)

(8)
4. رابط محاسباتی عددی

از روابط مشخصه های به دست آمده در شکل (2) می‌توان برای محاسبه بردراهشی در مرز مشترک بین دو سر روش حجم محدود استفاده کرد. به نظر اجاهت به طرح محاسباتی بالا استندیندی بر اساس مشخصه‌های معادلات تراکم پذیری مصنوعی، می‌توان سیستم‌های مختلف و روابط سازگاری منطقی به آنها یا برای محاسبه بردراهشی مرز مشترک به کار برده. یک روش جدید با پایین‌لاگری کلی دو لایه پیشنهاد شده است. روابط سازگاری (8) برای محاسبه بردراهشی نیاز به تراکم پذیری مصنوعی دارد. سلول مورد استفاده قرار گرفته اند در حالتی بردراهشی لزج با طرح معمولی مرکزی گسته‌سازی شده است.

2.1. بردراهشی شار جاجاجی

به منظور محاسبه بردراهشی شار جاجاجی در ریز مرز مشترک بین دو سر از مکانیزم تراکم پذیری جاده موج اکوستیک با مسریاهای تصویری ماده مولکول‌های مخصوصات اندازه‌گیری شده است. مهندسی در شکل (2) نشان داده است. سطح مقطع کجر ماج مانند قطعی در ریز کشت می‌باشد که در مرز مشترک بین دو سر را تشکیل می‌دهد. بین این اطلاعات، فیزیک و تحقیقات موجب انتخاب موج جاجاجی اکوستیک، با استفاده از موج موج، اندازه‌گیری شده است. مقدار کجر مانند قطعی در ریز کشت می‌باشد که در مرز مشترک بین دو سر را تشکیل می‌دهد. بین این اطلاعات، فیزیک و تحقیقات موجب انتخاب موج جاجاجی اکوستیک، با استفاده از موج موج، اندازه‌گیری شده است. مقدار کجر مانند قطعی در ریز کشت می‌باشد که در مرز مشترک بین دو سر را تشکیل می‌دهد. بین این اطلاعات، فیزیک و تحقیقات

2.2. سطح مقطع کجر ماج با صفحه xy

طرح محاسباتی برای تخمین جملات جاجاجی

به عنوان مثال، برای محاسبه بردراهشی شار جاجاجی در نقطه * در ریز مرز مشترک بین دو سر، روابط سازگاری لزج بوده استفاده می‌گردد:

3. معادلات حاکم

معادلات ناب‌اریستوکسیس دیوید برای جنرال گیری دو تابع ناب‌اریستوکسیس تصحیح شده با روش تراکم پذیری مصنوعی به صورت زیر است:

\[
\begin{align*}
\frac{\partial W}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial R}{\partial x} + \frac{\partial S}{\partial y} &= 0, \\
\phi &= \pi / 2, \quad \theta = \pi, \quad \varphi = 3\pi / 2
\end{align*}
\]

در طول آنها گسته‌سازی شده است.

\[
R, S, F, G, \text{ و } W
\]

در روابط بالا W بردار مفهومی ولتاژ یکی و به نتیجه بردراهشی شار جاجاجی و در دو جهت می‌باشد. \(\beta\) پایین‌ترین را تراکم پذیری مصنوعی و \(\text{Re}\) شاخص عدد ریلیکس می‌باشد. معادلات (9) به شکل زیر نوشته شده اند: \(\text{Re}\) زیر اینجاست اینجاست:

\[
(x, y) = (x^*, l^*/l^*, \theta^*) = (t^*, l^*/l^*), \quad \phi^* + \frac{p_{\text{re}}}{p_{\text{ref}}} = \frac{k}{l^*}
\]

با استفاده از قبیله انگلیسی Green به صورت زیر نوشته می‌شود:

\[
A_j \frac{\partial W_j}{\partial t} + \sum_{i=1}^{n} (F_{j} \Delta y - G_{j} \Delta x) = \sum_{i=1}^{n} (R_{i} \Delta y - S_{i} \Delta x) \]

که در آن \(A_j\) نشان‌گر مساحت سطح محاسباتی است.
روش پیامدهای جریان تراکمی ناپذیر داخل حفره

محاسبه می‌شود:

\[
\frac{\partial \phi}{\partial x} = \frac{1}{S} \int \frac{\partial \phi}{\partial x} \, dS = \frac{1}{S} \sum_{i=1}^{4} \phi_{i} \Delta y_{i}
\]

\[
= \frac{1}{S} \left[0.5(a_{i} + a_{i}) \Delta y_{AN} + 0.5(a_{i} + a_{i}) \Delta y_{NB} \right] + 0.5(a_{i} + a_{i}) \Delta y_{AM} + 0.5(a_{i} + a_{i}) \Delta y_{MA}
\]

(15)

که در آن:

\[
y_{N} = \frac{1}{4} \left[y_{i} + y_{i+1} + y_{i+1+j+1} + y_{i+j+1} \right]
\]

\[
y_{M} = \frac{1}{4} \left[y_{i} + y_{i+1} + y_{i+1+j} + y_{i+j} \right]
\]

\[
\phi_{i} = \frac{1}{4} \left[\phi_{i} + \phi_{i+1} + \phi_{i+1} + \phi_{i+1} \right], \quad \phi_{i} = \frac{1}{4} \left[\phi_{i} + \phi_{i} + \phi_{i} + \phi_{i} \right]
\]

(16)

این مقدارات مورد استفاده قرار گرفته است. برای طرح شرایط اولیه مقادیرهای جریان در نقطه 2، 1 برای بازگشت سیال به حداکثر مقدار مساحت شکل 2 را استفاده می‌کنیم. می‌تواند برای ماهیار محاسبه شده با توجه به مقدارهای بوجود آمده هم‌ارز با سیال مورد بررسی قرار گیرد. مدیران روزا باید طرح را نورمال انجام دهند.

\[
A = \frac{1}{2} \left(u_{i} - \sqrt{u_{i}^{2} + 4\beta} \right), \quad B = \frac{1}{2} \left(u_{i} + \sqrt{u_{i}^{2} + 4\beta} \right),
\]

\[
C = \frac{1}{2} \left(v_{i} - \sqrt{v_{i}^{2} + 4\beta} \right), \quad D = \frac{1}{2} \left(v_{i} + \sqrt{v_{i}^{2} + 4\beta} \right)
\]

(14)

شکل 3. شکستن تانه‌برهای محاسبه جملات لزج

2.3. انگرالگری زمانی

محاسبه گستره دستگاه مکانیک اگزدیک مجموعه از معادلات دیفرانسیل معنی‌دار را داده که در زمان توسط یک روش جریان راگن-کوتای منتهی چهار از انگرالگری می‌شود. معادلات گستره شده زمانی به شکل زیر هستند:

\[
\frac{\partial W}{\partial t} + Q = 0
\]

(17)

که در آن Q یک عملکردهایی مشابه از جملات جاها و لزج است. کوتای منتهی چهار مورد استفاده در این تحقیق به صورت زیر است:

\[
W^{(0)} = W^{(0)}, \quad W^{(1)} = W^{(0)} - \frac{\Delta t}{2} Q^{(0)}
\]

\[
W^{(2)} = W^{(0)} - \frac{\Delta t}{2} Q^{(1)}, \quad W^{(3)} = W^{(0)} - \Delta t Q^{(2)}
\]

\[
W^{(4)} = W^{(0)} - \frac{\Delta t}{6} Q^{(3)} + 2Q^{(1)} + 2Q^{(2)} + Q^{(3)}
\]

(18)

\[
(\beta / n_{i}) du + dp = 0, \quad \text{on the } \phi = 0 \text{ wave}
\]

\[
(\beta / n_{i}) du - dp = 0, \quad \text{on the } \phi = \pi \text{ wave}
\]

(12)

\[
(\beta / n_{i}) dv + dp = 0, \quad \text{on the } \phi = \pi/2 \text{ wave}
\]

\[
(\beta / n_{i}) dv - dp = 0, \quad \text{on the } \phi = 3\pi/2 \text{ wave}
\]

(13)

در رابطه 12، (12) تانگار مقادیر فشار و مولفه‌های پرده سرعت در مرز مشترک بین دو سیال مورد استفاده که از معادلات 12 و مقادیر پارامترهای جریان در نقاط 1 و 2 در زمان قبل محاسبه می‌شوند (شکل 2)، با استفاده از مقادیر به دست آمده برای بردارهای شرایط جریان در مرز مشترک دو سیال محاسبه می‌شوند. با استفاده از این روش، یک طرح MCB محاسباتی کاملاً بالاسکسی براساس خاصه‌ها به روی (Multidimensional Characteristic Based) برای مساحت شرایط جریان در مرز دو سیال در روش MCB حجم محدود مورد استفاده قرار گرفته است. برای طرح اولیه مقادیرهای جریان در نقطه 2، 1 برای بازگشت سیال به حداکثر مقدار مساحت شکل 2 را استفاده می‌کنیم. می‌تواند برای ماهیار محاسبه شده با توجه به مقدارهای بوجود آمده هم‌ارز با سیال مورد بررسی قرار گیرد. مدیران روزا باید طرح را نورمال انجام دهند.

\[
A = \frac{1}{2} \left(u_{i} - \sqrt{u_{i}^{2} + 4\beta} \right), \quad B = \frac{1}{2} \left(u_{i} + \sqrt{u_{i}^{2} + 4\beta} \right),
\]

\[
C = \frac{1}{2} \left(v_{i} - \sqrt{v_{i}^{2} + 4\beta} \right), \quad D = \frac{1}{2} \left(v_{i} + \sqrt{v_{i}^{2} + 4\beta} \right)
\]

(14)

2.4. بردارهای شرایط لزج

برای تخمین بردارهای شرایط لزج در معادلات ناور-استوکس، نیاز به محاسبه مشترکهای اول پارامترهای جریان در مرز مشترک بین دو سیال است. در این تحقیق، گستره سایر محاسبه‌ها برای تخمین جملات لزج در مرز مشترک دو سیال مورد استفاده قرار گرفته است. به عنوان مثال، مشترکهای اول در روي و جهت در شکل 3 با انگرالگری روی یک شکستن تانه‌برهای محاسبه جملات لزج
بیشینه مقاومت گام‌زمانی Δt از شرط پایداری که بر روی عدد کوانتاسیون CFL عاملی می‌شود، محاسبه‌ی می‌شود. عدد CFL موارد گرفته شده است:

$$\text{CFL} = \left[\frac{u^2 + v^2}{\Delta x^2} + \frac{u^2}{\Delta y^2} + \frac{v^2}{\Delta z^2} + \frac{v}{\Delta y} \right] \Delta t$$

که در آن Δt برای یک تمرین فصلی بین مرکز سرعت مورد نظر تا

مراکز سرعت‌ها جواب است.

از نتایج مقداری از مکانی علومی می‌شود که استفاده از طرح محاسباتی بیشتری CFL مقدار جزئی را تا حدی تجاری

افزایش داده و باعث افزایش سرعت همگرایی به حالت یا می‌شود.

شکل 4. مقایسه نتایج به دست آمده برای مولفه سرعت u در سرعت CFL و CB با دقت مربوطه اول در 1000×40 و شکل 3

شکل 5. مقایسه نتایج به دست آمده برای مولفه سرعت v در CB با دقت مربوطه اول در 1000×40 و شکل 3

نتایج مشابه برای طرح های CB و مولفه‌ی دوم به همراه نتایج حاصل از روش میانگین گیری مرکزی به اضافه کردن لجستیک و مصنوعی در شکل های (6) تا (8) ارائه شده است.

5. بحث در نتایج

جریان تراکم نابینی و یا یافته از در داخل یک حفره مربعی شکل، با هر توسط محققین به منظور ارزیابی توابعی روش‌ها جدید ارائه شده.

جنبه مطالعه قرار گرفته است [26, 27, 28, 29, 30].

به منظور مقایسه توابعی روش ارائه شده در نظر دقت جواب‌ها MCB و نرخ همگرا به حالت یا روش‌های موجود، ابتدا حل جریان داخل حفره در عدد رینولدز 1000 براساس سرعت دیواره متحرک و طول ضلع حفره و در شکل 40×40 در نظر گرفته شده است.

در مورد تمامی نتایج ارائه شده، روش یا مورد استفاده در تمامی موارد از جمله گسترش نرم‌افزار، شرایط مرزی و گسترش زیاد جزئیات از لحاظ کلیک بوده و توانایی محاسبه برد راهی

شرایط جانبی تفاوت می‌شود. نتایج به دست آمده برای مولفه سرعت u در روي خط افقی x از مرکز حفره و مولفه v روی خط افقی y از مرکز حفره مشخص شده است.

CB جدید در شکل های (3) و (5) نشان داده شده است. هر دو مورد استفاده، مقدار Δt به دقت مورد استفاده گرفته شد و نتایج حفره شناخته شده است. نشان داده شده است. همراهی که در شکل های (3) و (5) دیده می‌شود نتایج به دست آمده با استفاده از طرح CB محاسباتی مربوطه اول به مراتب دقت‌تری از روش مرسوم MCB دقت مربوطه اول در روی شکلهای 40×40 می‌باشد.
شکل ۸: مقایسه نتایج به دست آمده برای مولفه سرعت در روز ختم افزایش گذرا از مرکز حفره با استفاده از طرح های MCB و CB با دقت مرتبه دوم و طرح میانگین گیری مرکزی Re=1000 و شبکه ۴۰×۴۰.

شکل ۹: مقایسه نتایج به دست آمده برای مولفه سرعت Re در روز ختم عمومی گذرا از مرکز حفره با استفاده از طرح های MCB و CB با دقت مرتبه دوم و طرح میانگین گیری مرکزی Re=1000 و شبکه ۴۰×۴۰.
را نسبت به روش پیشنهادی مرسوم یک بعده نشان می‌دهد.

نرخ همگرایی طرح‌های مرکزی CB و MCB در محدوده اعداد رتبازی 100 تا 1000 با یکدیگر مقایسه شده است که در تمامی موارد طرح پیشنهادی MCB مرتبه دوم از طرح‌های مرکزی و مرتبه دوم همگرایی سرعتی را از خود نشان می‌دهد. نمونه‌ای از تاریخچه همگرایی سه طرح محاسباتی مورد بحث در شکل (9) نشان داده شده است.

برای Re=1000، MCB و CB مقایسه تاریخچه همگرایی روش‌های مرکزی نورم خطای صورت زیر تعریف شده است:

$$\text{ENORM} = \frac{\sqrt{\sum_{i=1}^{IM} \sum_{j=1}^{JM} \left(\frac{p_{\text{MCB}} - p_{\text{CB}}}{\text{IM} \times \text{JM}} \right)^2}}{\text{IM} \times \text{JM}}$$

که در آن IM و JM تعداد سلول ها در جهت های x و y هستند.

با استفاده از روش CFL بیشینه عدد مجاز در مورد استفاده از MCB به ترتیب برای CB به ترتیب برای CB با 1/7 و 0.4 باشند. به ویژه همایشگرهای در ادبیات فن تاکید شده است، در CB با توجه به تعداد انجام شده نتایج همگرايی کند طرح مشاهده می‌شود به طوری که برای کاهش جذر مجموع خطاهای CB مرتبه دوم با مقدار 0.3 × 10^{-3} با استفاده از طرح CB مرتبه دوم نیاز به 11965 عدد تکرار طرح‌های مرکزی و CB. در این عدد تکرار طرح CB مبتنی بر MCB در شکل (10) نتایج به دست آمده برای این طرح‌های مرکزی CB توسط 40×40 پیکسل در شکل (11) نشان داده شده است.
همانطور که در شکل‌ها نیز دیده می‌شود، نتایج حاصل از روش CB بسیار دقیقتر از نتایج MCB قبول و بسیار دور از واقعیت ارائه گردیده است. می‌باشد. شکل‌های (11) تا (15) نتایج به دست آمده برای کانترل‌های تابع جریان در شبکه 256×256 را برای محدوده وسیع از اعداد ریتوندز و همچنین اعداد ریتوندز بالا نشان می‌دهد.

شکل 12. خطوط جریان گردابه‌های اولیه و ثانویه در Re=1000, 3200

شکل 13. خطوط جریان گردابه‌های اولیه و ثانویه و نمای بزرگ شده گردابه‌ها در Re=5000

شکل 14. خطوط جریان گردابه‌های اولیه و ثانویه و نمای بزرگ شده گردابه‌ها در Re=7500

شکل 15. خطوط جریان گردابه‌های اولیه و ثانویه و نمای بزرگ شده گردابه‌ها در Re=10,000

نماهای بزرگ شده گردابه‌های ثانویه نشان دهنده شده است. منحنی‌های هم فشار و هم چرخش (vorticity contour) در شکل‌های (16) و (17) برای اعداد ریتوندز 1000 و 256256 می‌باشد.

Bruneau and Saad [34] شده توسط 5000 با استفاده از روش MCB منتسب به دوم در مقایسه با نتایج ارائه شده است. (vorticity contour)
طرح (A, C) برای مولفه سرعت u در روي خط عمودی گذرا از مركز حفره و مولفه (B, D) روي خط افقی گذرا از مركز حفره را در شکله 265×256 نشان می دهد. همانطور که دیده می شود، نتایج به Ghia et al. [27] دارد.

با به کار بردن طرح محاسباتی جدید MCB که بر اساس واقعیت فیزیکی دوبعدی سیال بنا به آندره شده و از روش بالاسمت دیگر دوبعدی برای محاسبه بردارهای شار جابجایی در مرز سطح ها استفاده می کند، روش عددی حاصل بسیار پایدار بوده و نیاز به افزودن هیچ گونه لزجت مصنوعی به منظور پایدار ساختن حل نیست باشد. شکلهای (18) و (19) نتایج به دست آمده با استفاده از Ghia et al. [27] مطابقت دارند.

شکلهای (18) مقایسه مقادیر محاسبه شده برای مولفه سرعت u در روي خط عمودی گذرا از مركز حفره با نتایج مرجع [27] در اعداد رینولدز مختلف.
روش پالادست چندبعدی بر اساس مشخصه‌های ترکام نایبدزی در داخل حفره

شکل ۱۹. مقایسه مقادیر محاسبه شده برای مولفه سرعت ۲ در روی خط افقی گذرا از مرکز حفره با نتایج مرجع [۲۷] در اعداد ریتنولز مختلف.

شکل ۲۰. نتایج به دست آمده برای چرخش در روی خط افقی و عمودی در مرکز هندسی حفره در Re=1۰۰۰با استفاده از MCB مرتبط دوم در مقایسه با Botella & Peyret [۳۵]

نتایج با دقت بالا برای مقادیر چرخش در روی خط افقی و عمودی در مرکز هندسی حفره با برای عدد ریتنولز ۱۰۰۰ ارائه شده اند. نتایج آنها و نتایج حاصل از روش MCB مرتبط دوم در شکل (۲۰) نشان داده شده است و همانطور که ملاحظه می‌شود همخوانی نتایج عالی است.

نتیجه‌گیری

در این مقاله یک روش جدید با استفاده از الگوریتم Botella & Peyret برای مشخصه‌های ترکام نایبدزی در داخل حفره است.

[33] Ertekin, E., Corke, T.C., Gokcol, C., "Numerical Solutions of 2-D Steady Incompressible Driven Cavity