ارائه یک مدل شبکه عصبی جهت پیش‌بینی کوتاه‌مدت قیمت نفت خام

مجید اسفهانیان و محمدضاوآ امین ناصری

چکیده: ایران یکی از پنج کشور بزرگ مالک ذخایر غنی نفتی در جهان است، ولی رشد صادرات محصولات غیرنفتی، هنوز هم بخش اعظم اقتصاد کلان کشور نفت متکی است و بیش از ۸۸٪ از اولیه کشور از نفت تأمین می‌شود. بنابراین اهمیت تحقیق در زمینه مباحث مربوط به اقتصاد نفت و بیشتر مدلی که بتواند قیمت نفت را پیش‌بینی نماید توجه علاقه‌فرآینی به استفاده از سیستم‌های هوشمند در جهت بهبود کیفیت تصمیمات مالی وجود دارد است. بیشتر شبکه‌های عصبی که از طریق آموزش توانایی‌های از تجارب گشته است به‌یادداشت و به‌همراه سطح کارایی گویا دارا می‌باشند. در این رابطه با استفاده از یک نمونه «بهبودیانه» یک مدل شبکه عصبی برای «پیش‌بینی ماهانه قیمت نفت خام»، توصیه داده شده است. در فرآیند توسعه این مدل، تأثیر انواع متغیرهای فیزی و نیم‌فیزی، تعداد نمونه‌های موردی، تعداد انواع و رونه‌های یافته ودیده و قطعات مختلف داده‌برای انتخاب مجموعه‌های آموزشی و آزمایش، انواع الگوریتم‌های یادگیری به‌همراه انجام آزمایش‌های درون قسمت (۴.۵) با میانگین خطای مطلق ۲۵ سنت در مجموعه آموزشی و ۷۱ سنت در مجموعه آزمایشی، به‌عنوان پیش‌بین مدل انتخاب گردیده است.

واژه‌های کلیدی: قیمت نفت خام، شبکه عصبی، پیش‌بینی مدل سازی غیرخطی، پیش‌بینی کوتاه‌مدت

۱. مقدمه

در دنبال صنعتی از تأسیس به کاهش روزافزون منابع انرژی، ارزش این منابع روز به روز بیشتر می‌شود. بنابراین، این نتیجه می‌گیرد که یکی از مهم‌ترین منابع مورد استفاده بشر، از اهمیتی ویژه برخوردار است. از طرفی قیمت نفت، به خاطر اهمیت آن در بزارهای بین‌المللی، رابطه آن با افزایش نفتی و موفقیت استراتژیک آن در کل اقتصاد کشوری، یکی از عوامل سیاست‌های اقتصادی بین‌المللی بوده و نقد و ارزیابی کنندگان در رزرو و رقابت بین‌المللی دارد.

در کشور ما، رشد صادرات محصولات غیرنفتی در بهبود گذشته، هنوز هم قیمت‌های ارزان می‌بیند و در تاریخ ۸/۴/۱۳۸۳ در Satan و در تاریخ ۸/۴/۱۳۸۷ به تصویب می‌رسد.

مجید اسفهانیان، کارشناس ارشد مدیریت سیستم و به‌ورودی دانشگاه صنعت آب و برق و دکتر محمدرضا امین ناصری، دانشیار دانشگاه تربیت مدرس:

amin_naseri@modares.ac.ir

esfahanian@pwut.ac.ir

کتابخانه ملی علوم مهندسی دانشگاه علم و صنعت ایران، شماره ۱، جلد ۲۹، ۱۳۸۷، صفحه ۲۵-۳۲
به عنوان مثال برای بیشینی یک سری زمانی با استفاده از یک شبکه عصبی با ورودی و یک خروجی می‌توان نوشت:

\[y_i = f(y_{i-1}, y_{i-2}, ..., y_{i-d}) + \epsilon_i \]

(1)

در این رابطه، \(y_i \) مشاهده در لحظه \(i \) و \(\epsilon_i \) مقدار خطای در لحظه \(i \) است. در این حالت اگر از یک شبکه عصبی به جای تابع \(f \) استفاده نماییم، یک مدل اتومرگرسیون به شکل زیر مشاهده گیلی

\[y_i = \beta_0 + \beta_1 y_{i-d} + \epsilon_i \]

(2)

و نظریه شبکه عصبی. در اختیار داریم. به عنوان مثال یک سری زمانی می‌توانیم داده‌ها را ذخیره کنیم و با استفاده از آن‌ها در انتخاب داده‌ها دهم. در این صورت یک شبکه عصبی با یک ورودی و یک خروجی در نظر گرفته می‌گردد و در نتیجه \(n \) گونه آموزشی خواهیم داشت.

جدول 1: گونه آموزشی

<table>
<thead>
<tr>
<th>خروجی:</th>
<th>ورودی‌ها:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_{i+1})</td>
<td>(y_i, y_{i-1}, ..., y_{i-d})</td>
</tr>
</tbody>
</table>

در این رابطه، \(y_i \) مشاهده در لحظه \(i \) و \(\epsilon_i \) مقدار خطای در لحظه \(i \) است. در این حالت اگر از یک شبکه عصبی به جای تابع \(f \) استفاده نماییم، یک مدل اتومرگرسیون به شکل زیر مشاهده گیلی

\[y_i = \beta_0 + \beta_1 y_{i-d} + \epsilon_i \]

(2)

و نظریه شبکه عصبی. در اختیار داریم. به عنوان مثال یک سری زمانی می‌توانیم داده‌ها را ذخیره کنیم و با استفاده از آن‌ها در انتخاب داده‌ها دهم. در این صورت یک شبکه عصبی با یک ورودی و یک خروجی در نظر گرفته می‌گردد و در نتیجه \(n \) گونه آموزشی خواهیم داشت.

جدول 1: گونه آموزشی

<table>
<thead>
<tr>
<th>خروجی:</th>
<th>ورودی‌ها:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_{i+1})</td>
<td>(y_i, y_{i-1}, ..., y_{i-d})</td>
</tr>
</tbody>
</table>

(1) Energy Information Administration

(2) Random Walk Model
Performance Criteria

In order to evaluate the performance of a system, various criteria are used. These criteria help in assessing the system's effectiveness and efficiency. One of the common performance criteria is the Sum of Squared Errors (SSE), which is defined as:

\[SSE = \sum_{j=1}^{n} (y_j - \hat{y}_j)^2 \]

where \(y_j \) represents the actual output and \(\hat{y}_j \) is the predicted output.

In the context of the described system, the performance criteria are used to evaluate the system's ability to predict the output accurately. The system is designed to minimize the SSE, thereby improving its performance.

2.3 Refiner Acquisition Cost of Crude Oil (RAC)

The RAC is a crucial aspect in the oil refining industry. It represents the cost associated with acquiring crude oil from various sources. A lower RAC indicates more efficient and cost-effective oil acquisition strategies.

References

1. Sum of Squared Errors (SSE)
2. Legs
3. Refiner Acquisition Cost of Crude Oil
5- درایه مدل شبکه عصبی پیشین قیمت
یک برودار پاترلی در مدل شبکه عصبی، یک فرآیند سیستماتیک نیست. یک الگوریتم شناسایی (MATLAB) استفاده شده است. برای اعمال این الگوریتم، MATLAB را تهیه کنید.

4- نتایج آزمایش‌ها نشان داد که بهترین نتایج در حالت استفاده از تابع MSE بسته می‌شود.

5- انتخاب پیشین تابع عملکرد شبکه

کرنال CDTS و CDT و MMSE R2

2

(r2)

r

Variance ، MAPE

SSE ، MAE ، MSE

۳۰

جد) و جهش و کتر آزمایش

کثر از حد) رخ داده‌دید.

\[MSW = \frac{1}{n} \sum_{i=1}^{n} W_i^2 \]

\[MSE_{\text{Reg}} = \gamma MSE + (1- \gamma) MSW \]

\[MSW = \frac{1}{n} \sum_{i=1}^{n} W_i^2 \]

\[\gamma \text{ Variance} \]

\[\text{Maape} \]

\[\text{Sse} \]

\[\text{Mae} \]

\[\text{Mse} \]

\[\text{Cdt} \]

\[\text{Cdts} \]

\[\text{Cut} \]

\[\text{R} \]

\[\text{Adjust} \]
در نهایت بهترین عملکرد مدل بسته‌ای به ترتیب داده‌ها به بسته 2 و پرداخت 20/2 نهایت جهت مجموعه آموزش و آزمایش است. ممکن است بهترین عملکرد مدل بسته 1 نهایت جهت مجموعه آموزش و آزمایش است. در این نتایج تکرار عملکرد مرتبه‌ای اثر بسته 1 نهایت جهت مجموعه آموزش و آزمایش انجام گردیده است. از جمله تأثیر تبیین مختلف برای این ورودی و این پایه بهترین شبکه بررسی شده است. بنابراین شبکه با نهایت بهترین عملکرد ذکر شده، یک مجموعه «اعتبار» هم در محدوده 20-100 دریافت می‌گردد. در این حاصل بیش از 50 درصد تبیین داده‌ها به نسبت 30/20 بهبود امید است. این ابهام به کلاسیک داده‌ها به زبان 30/20 بهبود تشخیص و به هر مجموعه آموزش و آزمایش اخلاقی داده نموده است.\\n\\n\[\text{شکل 2: نحوه تخصیص داده‌ها به مجموعه‌های آموزش و آزمایش}\]

\[\text{گروه BFGS}\]

در مورد لایه ورودی و لایه‌های پیشین، با انجام 2720 آزمایش بررسی گردیده است. در این کار گروه آموزش، الگوریتم یک‌باری تبیین همکاری‌های تلفنی و مشابه‌های تلفنی گردیده که شبکه در شرایط استفاده از تبیین خصی برای لایه‌های آموزش ملکه‌پری را از خود نشان می‌دهد. بنابراین این مشخصات به دست آمده در نهایت این است که بهترین شبکه بدون شرط مقداری داردی در فعال‌دهی خاص، دسترسی است و عملکرد خوبی را از خود نشان دهد.

\[\text{دسته 4-5 الگوریتم آموزش شبکه}\]

قاده باعث گزارش در شبکه عصبی، جهت یاد دادن کار خاص به شبکه استفاده می‌شود. برای این کار از الگوریتم‌های وزن‌ها و بازسازی شبکه را اصلاح می‌نماید استفاده می‌شود که الگوریتم آموزشی BFGS (به انگلیسی: Broyden-Fletcher-Goldfarb-Shanno) یکی از الگوریتم‌های محیط طراحی شده است. \[\text{Parsimony}\]
در شیبک به دو دایه پهنای، بهترین نتایج در حالت دیده به دست آمده است که در دایه پهنای اول، ۲ نر و در دایه پهنای دوم، ۸ نر در نظر داشته است. همچنین در شیبک به دو دایه پهنای، بهترین نتایج در حالت مختلی به شرح جدول ۲ حساب کرد که شیبک به مجموع ۱۰ نر می‌باشد. جُهت رعایت اصل صرف‌جویی، به عنوان نمایندگی این گروه در نظر گرفته شده است.

جدول ۲. نتایج آزمایش‌های انجام شده برای تعیین بهترین شیبک

<table>
<thead>
<tr>
<th>شیبک در</th>
<th>تعداد نرها در دایه اول</th>
<th>تعداد نرها در دایه دوم</th>
<th>تعداد نرها در دایه سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزماش</td>
<td>۱۰</td>
<td>۵</td>
<td>۲</td>
</tr>
<tr>
<td>مایع ۱</td>
<td>۸</td>
<td>۴</td>
<td>۱</td>
</tr>
<tr>
<td>مایع ۲</td>
<td>۷</td>
<td>۳</td>
<td>۲</td>
</tr>
</tbody>
</table>

با مقایسه نتایج بدست آمده از شیبکهای یک، دو و سه سایه طبقات جدول ۳ و با در نظر گرفت اصل صرف‌جویی در تعداد نرها و گره‌های پهنای، در نهایت شیبک به دو دایه پهنای و به ترتیب ۱ و ۸ نر در دایه پهنای اول و دوم (۸-۱۰)، که در دایه پهنای تعداد معیار بهینه است به عنوان شیبک نهایی حاصل از انجام آزمایش‌های این یکش انتخاب شده است.

جدول ۳. مقایسه معیارهای عملکرد برای شیبکه‌های یک، دو و سه سایه پهنای

<table>
<thead>
<tr>
<th>آزمایش</th>
<th>AME</th>
<th>MAE</th>
<th>MAPE</th>
<th>MSE</th>
<th>SSE</th>
<th>MAE</th>
<th>MAE</th>
<th>DS</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزماش</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مایع ۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مایع ۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۵-۹ تعداد نرها و نرها

شیبکه در این بخش آزمایش‌های مختلف جهت تعیین نوع شیبکه برای پیش‌بینی انجام شده است. آزمایش‌ها برای شیبکه‌های آنیلا، آنتی‌سپتیک، حمایت و رسرسون تعمیم یافته و در نتیجه، در جدول ۴ به‌دست آمده است.

جدول ۴. مقایسه معیارهای عملکرد برای انواع مختلف شیبکه‌های

<table>
<thead>
<tr>
<th>شیبکه‌های عملکرد</th>
<th>R2</th>
<th>MAPE</th>
<th>MdAPE</th>
<th>MSE</th>
<th>SSE</th>
<th>MAE</th>
<th>MAE</th>
<th>DS</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیش‌بینی</td>
<td>۰.۸۷</td>
<td>۳.۸۸</td>
<td>۲.۸۸</td>
<td>۹۸.۱</td>
<td>۹۸.۱</td>
<td>۷۸.۵</td>
<td>۷۸.۵</td>
<td>۹۸.۱</td>
<td>۹۸.۱</td>
</tr>
<tr>
<td>بالا</td>
<td>۰.۸۷</td>
<td>۳.۸۸</td>
<td>۲.۸۸</td>
<td>۹۸.۱</td>
<td>۹۸.۱</td>
<td>۷۸.۵</td>
<td>۷۸.۵</td>
<td>۹۸.۱</td>
<td>۹۸.۱</td>
</tr>
<tr>
<td>ایستا</td>
<td>۰.۸۷</td>
<td>۳.۸۸</td>
<td>۲.۸۸</td>
<td>۹۸.۱</td>
<td>۹۸.۱</td>
<td>۷۸.۵</td>
<td>۷۸.۵</td>
<td>۹۸.۱</td>
<td>۹۸.۱</td>
</tr>
<tr>
<td>رسرسون</td>
<td>۰.۸۷</td>
<td>۳.۸۸</td>
<td>۲.۸۸</td>
<td>۹۸.۱</td>
<td>۹۸.۱</td>
<td>۷۸.۵</td>
<td>۷۸.۵</td>
<td>۹۸.۱</td>
<td>۹۸.۱</td>
</tr>
</tbody>
</table>

Over Fitting
جدول ۵ آموزش و مقدار های برشینی قیمت

جدول ۶ میزان‌های عملکرد شبکه برشینی قیمت

هامان طور که ملاحظه می‌شود شکل فاراد است هر برشینی مربوط به مجموعه آزمایش را با خطای ۲۸۴۸ درصد انجام دهد. به طور ملیم سنت در هر برشینی به طور متوسط حدود ۷۰ سنت خطا دارد.

در صورت استفاده از آنالیز برآوردگی پس از آموزش، جهت بررسی کهفیت مدل در مقابل داده‌های آزمایش، مطلقوی شکل ۴ ملاحظه می‌گردد که خروجی‌های شبکه (X) با قیمت همبستگی ۰/۹۸ به مقادیر واقعی و نتایج این نتایج ادست برخی از مقادیر واقعی و نتایج این نتایج ادمشد.
جدول 7 مقایسه مقدار واقعی و پیش‌بینی شده قیمت نفت خام برای سال 2001

<table>
<thead>
<tr>
<th>سال</th>
<th>واقعی</th>
<th>پیش‌بینی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>15.51</td>
<td>16.01</td>
</tr>
<tr>
<td>1998</td>
<td>16.21</td>
<td>17.01</td>
</tr>
<tr>
<td>1999</td>
<td>16.86</td>
<td>17.86</td>
</tr>
<tr>
<td>2000</td>
<td>17.55</td>
<td>18.23</td>
</tr>
<tr>
<td>2001</td>
<td>18.27</td>
<td>19.01</td>
</tr>
</tbody>
</table>

5. نتیجه‌گیری

در سال‌های اخیر، روش‌های شیمیایی به عنوان یک الگوی تحقیق و توسعه مورد توجه واقع شده است. این روش‌ها برای بهبود روش‌های قیمت‌بندی نفت خام مورد استفاده قرار گرفته‌اند. الگوریتم‌های مختلف مدل‌سازی دقیق‌ترین نتایج را تولید نمی‌کنند. در سمت دیگر، الگوریتم‌های مختلف مدل‌سازی دقیق‌ترین نتایج را تولید نمی‌کنند. در سمت دیگر، الگوریتم‌های مختلف مدل‌سازی دقیق‌ترین نتایج را تولید نمی‌کنند.

6. تحقیق و بررسی

از جمله ارزش‌آمیز‌ترین مطالعات در زمینه تحقیق در زمینه نفت خام می‌توان به مطالعاتی اشاره نمود که در آن‌ها از الگوریتم‌های مختلف مدل‌سازی برای پیش‌بینی قیمت نفت خام استفاده گردیده‌اند.

7. تحقیق و بررسی

تولید کننده‌های نفتی می‌توانند از الگوریتم‌های مختلف مدل‌سازی برای پیش‌بینی قیمت نفت خام استفاده گردد. این الگوریتم‌ها می‌توانند بهبود روش‌های قیمت‌بندی نفت خام را ارائه دهند.

8. مراجع

