ارائه یک مدل شبکه عصبی جهت بیش‌بینی کوتاه‌مدت قیمت نفت خام

مجید اسفهانیان و محمدرضا امین‌نامی

چکیده: ایران یکی از پنج کشور بزرگ مالک ذخایر غنی نفتی در جهان است. علیرغم رشد صادرات محصولات غیرنفتی، هنوز هم بدون اطمینان اقتصاد کلان کشور به نفت متأثر است و بنیش از 8% از کل اقتصاد مبتنی بر نفت می‌باشد. ویژه‌ای کشور از نفت تأمین می‌شود. بنابراین اهمیت تحقیق در زمینه بازاریابی نفت و بورزه مالکی به تیوناد قیمت نفت را پیش‌بینی نماید. بر هیچ‌کس پیش‌بینی نیست. امروزه علیه قرار‌گرفتن به انتخابات سیستم‌های هیپوکت کیفیت تجربیات مالی یک مرجع است. بنزه شبکه‌های عصبی که از طریق آموزش توانایی یادگیری از تجربه گشته و به‌همراه سطح کارایی که را دارا یسعت، در این رابطه چکیده ویژه‌ای دارند. لنز در این تحقیق با استفاده از یادگیری «فراپیچت» یک مدل شبکه عصبی برای «بی‌بینی‌های ماهانه قیمت نفت خام» توسعه داده شده است. در فرآیند توصیف هر یک از نمونه‌های فرآیند، تأثیر انواع متغیرهای فیزیکی و مبتنی‌های نورنریلان دو درصد از مقدار داده‌های برای اندازه‌گیری و تغییر اندازه‌گیری نمونه‌های آموزشی و آزمایشی از طریق یادگیری به دست آمده، آزمایش‌های فرآیند بررسی شده است. در تحقیق یک شبکه پیش‌بینی در مکانه ۲۴ سانت در مجموعه آموزشی و ۲۱ سانت در مجموعه آزمایشی، به‌عنوان بهترین مدل انتخاب گردیده است.

واژه‌های کلیدی: قیمت نفت خام، شبکه عصبی، پیش‌بینی، مدل سازی مرحله‌ای، پیش‌بینی کوتاه‌مدت

1. مقدمه

در روز مبتنی امروز با توجه به گاهش و روزافروز منابع انرژی، ارزش این این منابع روز به روز بیشتر می‌شود. به هنرگی امروز، قیمت نفت به‌عنوان یکی از مهم‌ترین منابع مورد استفاده برخی از سه و پنج در پردازش مصرف‌کننده‌ها در تحقیق برخوردار است. از طرفی قیمت نفت به خاطر اهمیت آن در بارز‌تری بین سرمایه‌مانی، رابطه اساسی با قیمت نفت و موفقیت استراتژیک آن در کل اقتصادی، قیمت از عوامل سیاسی مؤثر در انتخاب بین سرمایه‌مانی و نفت تعبیه‌کننده‌ها در راهنما و رقابت اقتصاد بین‌المللی دارد. در کشور مالکی رشد صادرات محصولات غیرنفتی به ده‌گاه شده و هنوز هم علت عدم مبتنی در دل‌دوز ۸۵ این مقاله در تاریخ ۱۳۸۲/۱۵/۳۰ تیزی در تاریخ ۱۳۸۵/۴/۶۷ به توصیف نهایی رسیده است.

مجید اسفهانیان، کارشناس ارشد مدیریت سیستم‌های اتوماتیک دانشگاه صنعت اب

esfahanian@pwut.ac.ir

و برای

دکتر محمدرضا امین‌نامی، دانشیار دانشگاه تربیت مدرس

amin_naseri@modares.ac.ir
پیشینه، عمل برون‌بنی را این دنبال گذاشت. اغلب گروه‌های شکل عمیق یا پیش‌پیشی پیش‌آمدها و اصلاح شده، یا آزمایش داده شده است. بکر می‌پرسند. این از مدل‌های زمانی گسترده‌تر و مقداری بسیاری از یک‌دندانی یا در منطقه بزرگی به وسیله ارائه انرژی از یکی یا چند ورودی و یک یا چند خروجی به شکل عمیق، مدل می‌شود.

\[y_i = f(y_{i-1}, y_{i-2}, ..., y_{i-f}) + \varepsilon_i \]

در این رابطه، \(\varepsilon_i \) مقدار خطای لحظه، و \(\varepsilon_i \) مقدار خطای لحظه است. در این حالات اگر از یک شکل عمیق به جای تابع \(f \) استفاده شاخص، \(f \) مدل‌های خواصی داشته حال فضای کنیم \(n \) \(\varepsilon \) مدل اورژانسیون خواصی داشته. حال فضای کنیم \(n \) \(\varepsilon \) مدل اورژانسیون خواصی داشته. حال فضای کنیم \(n \) \(\varepsilon \) مدل اورژانسیون خواصی داشته. حال فضای کنیم \(n \) \(\varepsilon \) مدل اورژانسیون خواصی داشته. حال فضای کنیم \(n \) \(\varepsilon \) مدل اورژانسیون خواصی داشته. حال فضای کنیم \(n \) \(\varepsilon \) مدل اورژانسیون خواصی داشته. حال فضای کنیم \(n \) \(\varepsilon \) مدل اورژانسیون خواصی داشته. حال فضای کنیم \(n \) \(\varepsilon \) مدل اورژانسیون خواصی داشته. دانست

<table>
<thead>
<tr>
<th>جدول 1. الگوی آموزشی</th>
<th>الگوی آموزشی</th>
<th>الگوی آموزشی</th>
<th>الگوی آموزشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>خروجی: (y_{i+1})</td>
<td>ورودی‌ها: (y_1, y_2, ..., y_l)</td>
<td>الگوی آموزشی</td>
<td>1</td>
</tr>
<tr>
<td>خروجی: (y_{i+2})</td>
<td>ورودی‌ها: (y_2, y_3, ..., y_l+1)</td>
<td>الگوی آموزشی</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
| بکر می‌پرسند. این از مدل‌های زمانی گسترده‌تر و مقداری بسیاری از یک‌دندانی یا در منطقه بزرگی به وسیله ارائه انرژی از یکی یا چند ورودی و یک یا چند خروجی به شکل عمیق، مدل می‌شود.

نمونه‌هایی از الگوی آموزشی:

1. \(\text{Energy Information Administration} \)
2. \(\text{Random Walk Model} \)
6 Performance Criteria

\[Y_{\text{Max}} = \max \left(Y_0, Y_1, Y_2, \ldots, Y_n \right) \] (5)

\[Y_i = \sum_{j=0}^{i} \min \left\{ 0, \left[\left(Y_{\text{Max},i} - Y_{i,j} \right) - \left(Y_{\text{Max},i} - Y_i \right) \right] \right\} \] (6)

\[Y_{\text{ct}} = \sum_{j=0}^{i} \max \left\{ 0, \left[\left(Y_{\text{Max},i} - Y_{i,j} \right) - \left(Y_{\text{Max},i} - Y_i \right) \right] \right\} \] (7)

\[Y_{t} = Y_{\text{Max}} + Y_{ct} + Y_{Rt} \] (8)

\[Y_{t} = \max \left(Y_0, Y_{t,1}, Y_{t,2}, \ldots, Y_{t,n} \right) \] (9)

\[Y_{t,1} = \begin{cases} Y_{i,j} - Y_{i,j-1}, & Y_i = Y_{\text{Max}}, \\ 0, & \text{Otherwise} \end{cases} \] (10)

\[Y_{t,2} = \begin{cases} Y_{i,j} - Y_{i,j-1}, & Y_{i,j} \leq Y_i < Y_{\text{Max}}, \\ 0, & \text{Otherwise} \end{cases} \] (11)

\[Y_{t,3} = \begin{cases} Y_{i,j} - Y_{i,j-1}, & Y_i < Y_{i,j-1}, \\ 0, & \text{Otherwise} \end{cases} \] (12)

SSE = \sum_{j=1}^{n} \left(\hat{y}_j - y_j \right)^2 \] (2)

بعد از آموزش شبکه به بیان‌کردن وزنه‌ها منتفی با یک‌ maks تبدیل شد، که می‌توان از بیان‌کردن خطا و هندس مشابهی می‌توان در هر کنار نتایج داده‌های آموزشی به طور ظاهری نظیر

3. داداهای نهایی

داداهای هر نتایج از یک تحقیق شامل دو بخش فنی و بنبیدی است. داداهای فنی یا پیش‌بینی‌های نتیجه‌های معنی‌دار از مشاهداتی است. درحالی که داداهای بنبیدی داداهایی از داده‌های دیگر است که ممکن است بر روی منشأ روزگار نیاز داشته باشد. داداهای فنی، بهره‌برداری شبکه‌های نتیجه‌های مناسب‌ترین نتایج داده‌های بنبیدی نظیر

نوی رشته‌های مختلف و جمعیت جهان از "تایب جهانی" دریافت گردیده است.

سیر زمانی قیمت‌های نفت شرح صفر 222 قیمت‌های داده‌های دریافتی سال 1974 تا 2001 می‌باشد. قیمت‌های دریافتی از تقسیم مجموع کل مختصاتی خریداران بالا‌رینگ استفاده می‌شود. این قیمت‌ها به پردازش داده دسته‌ای برای هر شبکه است. درحالی که استفاده از این داده‌ها به جای استفاده از یکی از هر گراییدهای شاخ‌شیر نظیر نظر برای استفاده از این داده‌ها به شکلی باز شده است.

2 می‌باشد.

جهت تهیه داده‌های بینت، وسیع ترگزاس اینتردایت تبادل نش از سازمان مثبت اطلاعات ارزی آمریکا کمک گرفته شود. ولی منطقه‌های داده‌های آمریکا به بند 12 سال 1986 میلادی می‌باشد.

علاوه بر داده‌های قیمت نفت خام، داده‌های تغییرات قیمت نفت نیز با استفاده از سیر زمانی قیمت و با توجه به روش‌های موجود تولید شده است.\[13\]

روش اول از روش‌های مزکور عبارت است از تفکیک قیمت به

4 Performance Criteria

5 Sum of Squared Errors (SSE)

6 Logs

7 Refiner Acquisition Cost of Crude Oil

8 مراجعه کننده: [مما]
5-طراحی مدل شبکه عصبی پیشین قیمت
برای پیش‌بینی قیمت بهتر، مدل شبکه عصبی (یک‌ورودی سیستم‌بند) مورد استفاده قرار گرفته است. مدل، با استفاده از MATLAB ساخته شده و با اجرای آزمایش‌های 10 بار تکرار گردیده و نتایج مدل را مورد بررسی قرار گرفته است. نتایج تهیه‌کننده با یک‌واژه مورد استفاده قرار گرفته شدند. نتایج نشان داد که این روش، نتایج تهیه‌کننده، درجه و تحلیل داده‌ها و ارزیابی نتایج بسیار بهتری را نشان می‌دهد. همچنین، دیگر روش‌ها نیز برای تحلیل داده‌ها به بهترین نتایج دست‌یافته نشان می‌دهند.

5-1-آزمایش پیش‌بینی مدل معمول شبکه
در فرآیند پیش‌بینی قیمت، بهتر است مدل شبکه عصبی پیشین قیمت را برای تهیه نتایج قیمت بهتر استفاده کنید. این روش بهترین نتایج و تحلیل داده‌ها را تهیه کرده است. نتایج تهیه‌کننده با یک‌واژه مورد استفاده قرار گرفته شدند. نتایج نشان داد که این روش، نتایج تهیه‌کننده، درجه و تحلیل داده‌ها و ارزیابی نتایج بهتری را نشان می‌دهد.

5-2-نتایج آزمایش آموزش و آزمایش

Variance ΜdAPE MAPE SSE MAE MSE R2

CDT و CUT DS

4

5-3-پیش‌بندی داده‌ها

γ

MSEReg γMSE+(1−γ)MSW

MSW = \frac{1}{n} \sum_{i=1}^{n} W_i^2

4

5-4-نتساب داده‌های آموزش و آزمایش

و روی مجموعه آموزشی و میزان اطلاعات

\[\text{MSEReg} = \gamma \text{MSE} + (1 - \gamma) \text{MSW} \]

\[\text{MSW} = \frac{1}{n} \sum_{i=1}^{n} W_i^2 \]

\[\text{R}^2 \text{adj} \]

Variance ΜdAPE MAPE SSE MAE MSE R2

CDT و CUT DS

4

5-3-پیش‌بندی داده‌ها

γ

MSEReg γMSE+(1−γ)MSW

MSW = \frac{1}{n} \sum_{i=1}^{n} W_i^2

4

5-4-نتساب داده‌های آموزش و آزمایش

Variance ΜdAPE MAPE SSE MAE MSE R2

CDT و CUT DS

4
...
جدول 2. نتایج آزمایش‌های انجام شده برای تعیین بهترین شیکه

<table>
<thead>
<tr>
<th>شیکه</th>
<th>تعداد توتونها در لایه 1</th>
<th>تعداد توتونها در لایه 2</th>
<th>تعداد توتونها در لایه 3</th>
<th>R2</th>
<th>MAPE</th>
<th>MdAPE</th>
<th>MSE</th>
<th>SSE</th>
<th>MAE</th>
<th>DS</th>
<th>Variance</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.79</td>
<td>3.51</td>
<td>3.51</td>
<td>0.99</td>
<td>3.39</td>
<td>0.79</td>
<td>7.22</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0.77</td>
<td>3.28</td>
<td>3.28</td>
<td>0.96</td>
<td>3.35</td>
<td>0.76</td>
<td>7.11</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0.76</td>
<td>3.01</td>
<td>3.01</td>
<td>0.99</td>
<td>3.29</td>
<td>0.71</td>
<td>7.02</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

جدول 3. مقایسه معیارهای عملکرد برای شبکه‌هایی با یک، دو و سه لایه

<table>
<thead>
<tr>
<th>آزمایش</th>
<th>R2</th>
<th>MAPE</th>
<th>MdAPE</th>
<th>MSE</th>
<th>SSE</th>
<th>MAE</th>
<th>DS</th>
<th>Variance</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیشخور</td>
<td>0.78</td>
<td>3.28</td>
<td>3.28</td>
<td>99.1</td>
<td>99.1</td>
<td>70.7</td>
<td>90.7</td>
<td>31.3</td>
<td>0.05</td>
</tr>
<tr>
<td>المان</td>
<td>0.78</td>
<td>3.52</td>
<td>3.52</td>
<td>99.7</td>
<td>99.7</td>
<td>71.7</td>
<td>91.7</td>
<td>31.3</td>
<td>0.05</td>
</tr>
<tr>
<td>آشیاری</td>
<td>0.87</td>
<td>3.54</td>
<td>3.54</td>
<td>99.8</td>
<td>99.8</td>
<td>71.9</td>
<td>91.9</td>
<td>31.3</td>
<td>0.05</td>
</tr>
<tr>
<td>رگرسیون</td>
<td>0.97</td>
<td>3.54</td>
<td>3.54</td>
<td>99.9</td>
<td>99.9</td>
<td>71.9</td>
<td>91.9</td>
<td>31.3</td>
<td>0.05</td>
</tr>
</tbody>
</table>

* Over Fitting
جدول ۵ اثرات گردیده است. جدول ۶ معیارهای عملکرد شبکه نهایی پیش‌بینی قیمت مطابق شکل ۱ شبکه نهایی پیش‌بینی قیمت، یک شبکه پیشرفته با ساختاری (W) است و وزن‌ها (W) مقدار ارتباط (b) این شبکه، در

شکل ۳ شبکه نهایی پیش‌بینی قیمت ماهانه نفت خام

جدول ۵ وزن‌ها و مقدار ارتباط شبکه نهایی پیش‌بینی قیمت

<table>
<thead>
<tr>
<th>Input Weights</th>
<th>Layer Weights</th>
<th>Biases</th>
</tr>
</thead>
<tbody>
<tr>
<td>W₁</td>
<td>W₂</td>
<td>W₃</td>
</tr>
<tr>
<td>۰.۷۷</td>
<td>۰.۳۰</td>
<td>۰.۴۴</td>
</tr>
<tr>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۵۱</td>
</tr>
<tr>
<td>۰.۳۷</td>
<td>۰.۳۱</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>۰.۳۱</td>
<td>۰.۳۱</td>
<td>۰.۳۱</td>
</tr>
<tr>
<td>۰.۳۸</td>
<td>۰.۳۲</td>
<td>۰.۴۲</td>
</tr>
<tr>
<td>۰.۴۲</td>
<td>۰.۴۳</td>
<td>۰.۵۱</td>
</tr>
<tr>
<td>۰.۴۳</td>
<td>۰.۴۴</td>
<td>۰.۴۵</td>
</tr>
</tbody>
</table>

جدول ۶ معیارهای عملکرد شبکه نهایی پیش‌بینی قیمت

<table>
<thead>
<tr>
<th>معیار</th>
<th>داده‌ها</th>
<th>MSE</th>
<th>MAE</th>
<th>MAPE</th>
<th>MdAPE</th>
<th>SSE</th>
<th>R²</th>
<th>CDT</th>
<th>CUT</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>آموزش</td>
<td>۰.۹۸</td>
<td>۲.۳۳</td>
<td>۲.۸۸</td>
<td>۲.۸۸</td>
<td>۲.۸۸</td>
<td>۲۸۸۸</td>
<td>۰.۸۹</td>
<td>۳۲.۴</td>
<td>۲۳.۲</td>
<td>۱.۲</td>
</tr>
<tr>
<td>آزمایش</td>
<td>۰.۹۸</td>
<td>۲.۳۳</td>
<td>۲.۸۸</td>
<td>۲.۸۸</td>
<td>۲.۸۸</td>
<td>۲۸۸۸</td>
<td>۰.۸۹</td>
<td>۳۲.۴</td>
<td>۲۳.۲</td>
<td>۱.۲</td>
</tr>
</tbody>
</table>

همانطور که ملاحظه می‌شود شبکه قادر است هر پیش‌بینی مربوط به مجموعه آموزش را با خطای ۳.۲ درصد انجام دهد. به طور معمول تر در هر پیش‌بینی به طور متوسط حدود ۷۰ م ثانیه یک عدد

در قسمت آخر توصیف شده از آنالیز برآوردگی پس از آموزش، جهت بررسی کیفیت مدل در باید داده‌های آزمایشی، مطابق شکل ۴ ملاحظه تا گردید که خروجی‌های شبکه (X) یا غربال یک‌پارامتری (۴۹/۷) به مقادیر واقعی (Y) تغییر ایجاد برخی از مقادیر واقعی و پیش‌بینی شده قیمت نفت خام توسط مدل، برای سال ۲۰۰۱ در جدول ۷ اثرات

گردیده است.
Table 7. Macrophases Forecasting and Price Changes in the Oil Market, 2001

<table>
<thead>
<tr>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>15.15</td>
<td>18.64</td>
<td>22.77</td>
<td>24.38</td>
<td>22.62</td>
<td>22.48</td>
<td>23.79</td>
<td>21.46</td>
<td>21.98</td>
<td>24.21</td>
<td>15.34</td>
<td>17.62</td>
</tr>
</tbody>
</table>

6. The Result of

7. The Result of

8. The Result of

9. The Result of

10. The Result of

11. The Result of

12. The Result of

13. The Result of

14. The Result of

15. The Result of

References

Comp metric Forecasting of Crude Oil Prices”, IEEE, 2001, PP. 283-287.

A Neural Network Based Clustering Procedure For Bankruptcy Prediction”, American Business Research, Jun. 2000, PP. 80-86.

Economics of Oil in Practice and Theory”, tarbiat modares University, 1378.

