بررسی خواص فیزیکی و مینرالوژیکی بوکسیت معدن شاه بلاغی ناحیه دماوند ایران و امکان سنجی استفاده از آن در کاربردهای دیرگداز

رحیم نقی‌زاده، علی بنی‌طهبه و فرزین آریان‌پور

چکیده: در این تحقیق خواص و یوگریزه‌های نوعی بوکسیت ایرانی که از مرتع شابلاغی دماوند در ناحیه تهران استخراج می‌گردد با نوعی بوکسیت مرگب چینی به منظور کاربرد در محصولات دیرگداز مورد بررسی قرار گرفت. این دا خواص فیزیکی، شیمیایی، حرارتی، فازی و ریسنساتوری بوکسیت خام و زینتر شده در دمای‌های مختلف، ترکیبی تری یا ترکیبی چربی و سپس نمونه‌های با مقدرات مختلف گسترش و با استفاده از بوکسیت کلسیم، ایرانی و بوکسیت چینی ساخته شد. در نهایت خواص فیزیکی، شیمیایی، فازی و ریسنساتوری نمونه‌ها با یکدیگر مقایسه گردید و به توجه به دست‌آوردهای این آزمایش اشکال گردید که بوکسیت حاصل از معدن شابلاغی دماوند با مقادیر مناسب آلومینی و اکسیدهای دیگر به بهبود نمونه‌های دیرگداز ساخته شده از آن، خواص فیزیکی، شیمیایی و ریسنساتوری مناسبی با توجه به نمونه‌های ساخته شده از بوکسیت چینی جهت استفاده در کاربردهای دیرگداز دارای می‌باشد.

واژه‌های کلیدی: بوکسیت، دیگره، بوکسیت، کالونل، دماوند، شاه بلاغی

1. مقدمه

بوکسیت ماده‌ای طبیعی و هترنز شال مینرال‌های هیدروفوسائید آلومینیم از قبیل گیپسیت، دیاسپور و بوکسیت و ناخالص‌های نظیر سندیت، اکسی‌کالریت، اکسید سیانیت و بعضی مواد دیگر است. بوکسیت از هوازدوختی ویژه‌ای آلومینیوم دار نیست و نرمک و ناخالصی‌های تاریکی دارد. آلومینیوم می‌تواند با نور بنام سیانید با ریسنساتوری پس از برداشت رگه‌های مرغوب مانند انیخ استخراج می‌شود. به طور کلی بوکسیت به مخلوطی از مرغوب Fe2O3 با نور، Fe3O4 با

جدول 1. مشخصات مینرال‌های اصلی بوکسیت

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>بوهمت</th>
<th>دیاسپور</th>
<th>گیپسیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترکیب ناخالصی</td>
<td>40%</td>
<td>45%</td>
<td>25%</td>
</tr>
<tr>
<td>% Al₂O₃</td>
<td>15%</td>
<td>15%</td>
<td>25%</td>
</tr>
<tr>
<td>% H₂O</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>درصد</th>
<th>اثر بر روی بوکسیت</th>
<th>استرکتور کوارتیتی</th>
<th>دانشمند (g/cm³)</th>
<th>سنگی (cm-h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>زیاد</td>
<td>متوسط</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>کم</td>
<td>نیازمند</td>
<td>3.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>کم</td>
<td>نیازمند</td>
<td>3.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

تاریخ و صورت: 85/12/30

درکن رحیم نقی‌زاده، دانشکده مهندسی معدن دانشگاه علم و صنعت ایران.
mg@iust.ac.ir

علي بنی‌طهبه، دانشکده مهندسی معدن، دانشگاه اسلامی.

فرزین آریان‌پور، دانشکده مهندسی معدن دانشگاه علم و صنعت ایران.
arian@iust.ac.ir
کلسیناسیون یکی از تحقیقاتی است که بر پایه میزان آلواکسید در فازهای مونومری در آلواکسید، TiO2، Fe2O3، SiO2 و Al2O3 مطرح است. این تحقیق به دنبال تأثیر سایر مولکول‌ها و فازهای مبتنی بر آنها در فازهای مختلف تحقیقاتی است.
آزمایش‌های کیفیتی برای ارزیابی این مواد از سوی سازمان بین‌المللی معاونت‌های لودرالی (ASTM) و سازمان بین‌المللی معاونت‌های نیکل (PCE) صورت گرفته است.

- **L.O.I. (Loss on Ignition)**: مقدار مایعات احیای‌پذیر
- **K2O, Na2O, MgO, TiO2, CaO, Fe2O3, SiO2, Al2O3**: مقدار آلاینده‌ها

### جدول 1: آنتیز شیمیایی تعدادی از معادن بورکسیت ایران [11]

<table>
<thead>
<tr>
<th>L.O.I</th>
<th>K2O</th>
<th>Na2O</th>
<th>MgO</th>
<th>TiO2</th>
<th>CaO</th>
<th>Fe2O3</th>
<th>SiO2</th>
<th>Al2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>جاجرم</td>
<td>14/65</td>
<td>1/37</td>
<td>1/40</td>
<td>0/77</td>
<td>0/32</td>
<td>2/23</td>
<td>1/38</td>
<td>5/16</td>
</tr>
<tr>
<td>دهشت</td>
<td>14/95</td>
<td>0/45</td>
<td>0/40</td>
<td>1/76</td>
<td>0/22</td>
<td>1/57</td>
<td>1/35</td>
<td>5/21</td>
</tr>
<tr>
<td>برش</td>
<td>9/51</td>
<td>0/40</td>
<td>0/41</td>
<td>1/40</td>
<td>1/33</td>
<td>1/35</td>
<td>4/24</td>
<td>5/49</td>
</tr>
<tr>
<td>بورگان</td>
<td>1/19</td>
<td>0/5</td>
<td>0/14</td>
<td>0/30</td>
<td>0/23</td>
<td>1/18</td>
<td>0/35</td>
<td>2/85</td>
</tr>
<tr>
<td>نهانجان</td>
<td>0/12</td>
<td>0/1</td>
<td>0/2</td>
<td>0/3</td>
<td>0/3</td>
<td>0/05</td>
<td>0/15</td>
<td>0/35</td>
</tr>
<tr>
<td>سنان</td>
<td>13/15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### جدول 2: آلاینده‌های مصری در ساخت موادهای

<table>
<thead>
<tr>
<th>Al2O3</th>
<th>SiO2</th>
<th>Fe2O3</th>
<th>TiO2</th>
<th>CaO</th>
<th>Na2O</th>
<th>MgO</th>
<th>L.O.I</th>
</tr>
</thead>
<tbody>
<tr>
<td>بورکسیت گلیایی</td>
<td>45/6</td>
<td>12/7</td>
<td>23</td>
<td>1/6</td>
<td>1/4</td>
<td>1/5</td>
<td>0/1</td>
</tr>
<tr>
<td>بورکسیت چینی</td>
<td>42/3</td>
<td>12/9</td>
<td>22</td>
<td>1/7</td>
<td>1/5</td>
<td>1/6</td>
<td>0/12</td>
</tr>
</tbody>
</table>

### جدول 3: مواد اولیه مصری

| کالیت | 49/6 | 12/7 | 22 | 1/7 | 1/5 | 1/6 | 1/12 |

**پایان نکته:** با فراوری مناسب مواد بورکسیت مناسب برای کاربردهای دردست داشته و آنالیز شیمیایی تعیین شده. معمولاً معادن بورکسیت ایران در جدول 1 و 2 است (110). از نظر تجارتی درگذارهای اورومبابیا بالا یا رسیدگی اورومبابیا بالا با 75/5% اقلب از بورکسیت کلسیم کسی شده به عنوان ماده اولیه استفاده آن به شکل X. به دلیل خواص مطلوب نظر می‌شود. انجام ارزیابی ارزان قیمت بوده و به دلیل اجرای مشابه الگوریتم بورکسیت کلسیم از نظر لایه‌ای و ساختار اورومبابیا بالا و بررسی الگوریتم کلسیم با نیاز به تعیین کلسیم تهیه می‌شود. انجام انجام سازمان شرکت‌های خصوصی بورکسیت کلسیم و بورکسیت کلسیم دیگر در دهه‌های 1900-1550° به وسیله می‌شود. این تحقیق خواص فیزیکی و بستگی‌های بورکسیت حاصل از معادن با شایع واقع در ناحیه با تفویض در نتیجه یازدکیت‌های بررسی سپس کاربردیه آن در ساخت موادهای درگذارهای اورومبابیا بالا و کلسیم می‌گردد.

روش تحقیق

- برای انجام این تحقیق ابتدا مقدار تقیی 30 کیلوگرم سیک معدن بورکسیت از راه‌های نسبت مرغوب معدن شیائ لایه‌ای دوازون و انجام گردید. سپس سگهایی انتخاب شده با استفاده از سگه کننده و اسباب جوش‌کننده و دانه‌نده بررسی گردیده تا انتخاب زیرشاخ به کمتر از 5 میلی‌متر نشیند.

- پس از آن بورکسیت کلسیم مناسب به روش‌های مختلف برای نمونه‌برداری انتخاب گردید که با فراوری مناسب مواد بورکسیت مناسب برای کاربردهای دردست داشته و آنالیز شیمیایی تعیین شده. معمولاً معادن بورکسیت ایران در جدول 1 و 2 است (110). از نظر تجارتی درگذارهای اورومبابیا بالا یا رسیدگی اورومبابیا بالا با 75/5% اقلب از بورکسیت کلسیم کسی شده به عنوان ماده اولیه استفاده آن به شکل X. به دلیل خواص مطلوب نظر می‌شود. انجام ارزیابی ارزان قیمت بوده و به دلیل اجرای مشابه الگوریتم بورکسیت کلسیم از نظر لایه‌ای و ساختار اورومبابیا بالا و بررسی الگوریتم کلسیم با نیاز به تعیین کلسیم تهیه می‌شود. انجام انجام سازمان شرکت‌های خصوصی بورکسیت کلسیم و بورکسیت کلسیم دیگر در دهه‌های 1900-1550° به وسیله می‌شود. این تحقیق خواص فیزیکی و بستگی‌های بورکسیت حاصل از معادن با شایع واقع در ناحیه با تفویض در نتیجه یازدکیت‌های بررسی سپس کاربردیه آن در ساخت موادهای درگذارهای اورومبابیا بالا و کلسیم می‌گردد.
جدول ۵ مقداره خواص فیزیکی اکریلاتهای پوکسیتی کلسینه ایرانی و چینی

<table>
<thead>
<tr>
<th>پوکسیتی کلسینه</th>
<th>دانهسازی کلی (gr/cm³)</th>
<th>جدید آب (٪)</th>
<th>ظاهری (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پوکسیتی چینی</td>
<td>0.12</td>
<td>2/5</td>
<td>0/7</td>
</tr>
<tr>
<td>پوکسیتی شاه بلاغی</td>
<td>0/21</td>
<td>6</td>
<td>0/75</td>
</tr>
</tbody>
</table>

جدول ۶ نتایج حاصل از اندازه‌گیری دیردگرای (PCE) اکریلاتهای پوکسیتی کلسینه

<table>
<thead>
<tr>
<th>نوع پوکسیتی</th>
<th>شاره مخروط (عدد)</th>
<th>شرایط اندازه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>پوکسیتی چینی</td>
<td>33</td>
<td>132.5</td>
</tr>
<tr>
<td>پوکسیتی شاه بلاغی</td>
<td>33</td>
<td>175.5</td>
</tr>
</tbody>
</table>

جدول ۷ توزیع دانه‌بندی اکریلاتهای پوکسیتی کلسینه

<table>
<thead>
<tr>
<th>پوکسیتی</th>
<th>درصد وزنی</th>
<th>اندازه مش. آل.</th>
</tr>
</thead>
<tbody>
<tr>
<td>پوکسیتی چینی</td>
<td>45</td>
<td>0.65</td>
</tr>
<tr>
<td>پوکسیتی شاه بلاغی</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>پوکسیتی شاه بلاغی</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>پوکسیتی شاه بلاغی</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>پوکسیتی شاه بلاغی</td>
<td>90</td>
<td>130.5</td>
</tr>
<tr>
<td>پوکسیتی شاه بلاغی</td>
<td>100</td>
<td>50–100</td>
</tr>
</tbody>
</table>

در ادامه به منظور مقایسه خواص دردگرگرایی ساخته شده از پوکسیتی کلسینه شده ایرانی و چینی، با توجه به منابع مطالعاتی و بررسی نمونه‌های داخلی و خارجی موجود، فرمولولایی نوعی آجر دیردگرگرای پوکسیتی به عنوان خواص فیزیکی و مکانیکی نمونه‌های مختلف ساخته شده با یکدیگر مقایسه گردید.

بدین منظور ابتدا کامی از پوکسیتی مطلق جدول ۷ دانه‌بندی شده در درصد ۵۰ در پوکسیتی شاه بلاغی (CC31) ۵ پوکسیتی چینی به کمک سانس زنگ گردید. سپس از پوکسیتی شاه بلاغی به کمک سانس زنگ گردید.

سپس فرمولولایی همه نمونه‌ها به‌طور مشابه در پوکسیتی به الحاق دیردگرگرایی در دمای ۱۵۰ درجه سانتی‌گراد در مدت ۲ ساعت و ۱۵۰ درجه سانتی‌گراد در مدت ۵ ساعت به نتایج در جدول ۷ بستگی داشته و در جدول ۶ بستگی داشته ۷ بستگی داشته.
پوکسیت‌های ایرانی و چینی معمولاً از نوع دیاسپور کالوئیته‌های هستند، دهیدراسیون آنها در قاره اند کلسیس‌های شنگر به افت و زنی در حدود 100 می‌گردد. در حالیکه این امر در مورد پوکسیت‌های امیریاکی لاتین که از نوع کیپسیت‌های حسنی در حدود 30% است. در مجموع، 7 جدول این کرده به برای پوکسیت ایرانی مشاهده می‌گردد. در منحنی DTA ابتدا یک پیک گرافیک پهن از حدود 125 تا 250°C وجود دارد که مربوط به خروج رطوبت و گروه‌های اتصال شیمیایی هیدروکسی‌لیا است. با توجه به اینکه این پوکسیت از نوع دیاسپور کالوئیته است، دو پیک گرافیک دیگر در حدود دمای 0.5°C و 5°C وجود دارد. پیک گرافیک اول در حوالی دمای 98°C و پیک گرافیک دوم در حوالی دمای 565°C وجود دارد که مربوط به دیاسپور و پپکیاگر گرافیک 610 و گرافیک 98°C مربوط به کالوئیته است.

شکل 3. منحنی تغییرات استحکام فشاری سرد نمونه‌های حاوی پوکسیت شاه بلاغی (BSh) و پوکسیت چینی (BCHN) با افزایش درصد کالوئیته

شکل 4. منحنی تغییرات انقباض خطی نمونه‌های حاوی پوکسیت شاه بلاغی (BSh) و پوکسیت چینی (BCHN) با افزایش درصد کالوئیته

شکل 5. تغییرات استحکام در اثر شکو حرارتی نمونه‌های حاوی پوکسیت شاه بلاغی (BSh) و پوکسیت چینی (BCHN) با افزایش درصد کالوئیته

3. نتایج و بحث

شکل‌های 6 و 7 منحنی‌های آنالیز حرارتی DTA و TG حاصل از پوکسیت شاه بلاغی خام را نشان می‌دهد. با توجه به اینکه...
طراحی کامپیوتری می‌شود. به طور کلی در مورد پوکسیتهای الیافosomal کاتالیزوری می‌توان گفت که قابلیت زنن‌پذیری آن‌ها بستگی به مقادیر امواج دارد و هرچه ترکیب پوکسیته با مولیبدن تندیکتر باشد، زنن‌پذیری آن‌ها مشکل‌تر است. شکل ۸ پی‌رسی‌سی‌توکسی‌تامرت در حالی استفاده از پیکروکوپ میکروسکوپیک می‌باشد.

شکل ۸. تصاویر میکروسکوپیک الکترونی روشنی (SEM) از ذرات مختلف موجود در پوکسیته شاه‌بنعلی خام EDS

شکل ۹. گوهای پوشش ابری‌ها X پوکسیته ایرانی را در حالت خام و پیس از یک در دمای مختلف نشان می‌دهد. هم‌اکنون طور که ملاحظه می‌گردد، در این نوع پوکسیته دو فاز دیاسپور و کاتالیزوری همراه با فاز اتانز (با توجه به حضور مقدار زیاد TiO۲ و جود دارند. در دمای ۱۲۰۰° تبدیل استیل سیلیکاتی به کامپیوتری می‌گردد با آزاد شدن مقداری فاز آلیکوم اسپرسه می‌باشد و همچنین دویشدرببخی از ناخالصی‌ها میزان فاز اسپرسه زیاد شده است.

همانگونه که در شکل ۹ ملاحظه می‌گردد منحنی پوشش ابری‌ها X حاصل از نمونه زنن‌پذیر و دمای ۱۲۰۰° به علت داشتن مقایسه با الیاف کهشته به صورت پهن و کلیتگرد در آمده و با منحنی های حاصل از سایر نمونه‌ها که عمداً از فازهای کریستالی تشکیل شده اند منتفاوا است.

یک‌واژه‌ها با افزایش دما تا ۱۴۰۰° اکستنشای تشکیل کامل شده و اکثر فازهای شیشه‌ای در میان پیوسته در این دما حضور فازهای کورنادوری، چربی و ترکیب قابل ملاحظه‌است. در تهیه با آفراشی با دما تا ۱۴۰۰° و ۱۷۵۰° دما تا ۱۴۰۰° و ۱۷۵۰° موفقیت پیک‌پکی چندین تغییری نکرده و فقط شدت بعضی از پیک‌ها افزایش یافته است.
بررسی خواص فیزیکی و میترالوژیکی پوکسیت معدن شاه بلاقی ناحیه دماوند ایران و امكان سنجی استفاده از آن در...
همانطور که ملاحظه می‌گردد، با افزایش فاز مولیت در اثر افزایش مقدار کاتولن، مقاومت به شوک حرارتی بهتر شده و به عبارت دیگر میزان کاهش استحکام در اثر عملیات شوک‌های حرارتی در نمونه‌های حاوی مقادیر بالاتر کاتولن کمتر است. شکل 11 الگویی پراش اشعه X نمونه‌های ارزیابی شده از بیولیت ایرانی و چینی حاوی 15 درصد رس را که استحکام و مقاومت به شوک حرارتی بهتری نسبت به سایر نمونه‌ها داشته اند می‌شود. ملاحظه می‌گردد که هر دو نمونه دارای مقادیر قابل توجهی از فازهای کوراندوم و مولیت پس از پخت می‌باشند. ضمن آنکه شدت پیکهای فاز مولیت در الگوی پراش اشعه X برای هر دو نمونه قابل ملاحظه

### شکل 12

تصاویر میکروسکوب الکترونی روبشی (SEM) و آنالیزهای EDS از ارتفاع مختلف موجود در ریزساختار نمونه‌های شده از بیولیت ایرانی

### شکل 13

تصاویر میکروسکوب الکترونی روبشی (SEM) و آنالیزهای EDS از ارتفاع مختلف موجود در ریزساختار نمونه‌های شده از بیولیت چینی

### شکل 14

دبیگرام فازی تغییرات سه جزیی 

<table>
<thead>
<tr>
<th>TiO₂</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[13] TiO₂ - SiO₂ - Al₂O₃
بررسی خواص فیزیکی و میکروالوژیکی بومکسیت معدن شاه باعث ناحیه دمآبند ایران و امکان سنگی استفاده از آن در... 


است. شکل‌های 12 و 13 ریزساختار میکروسکوپی الکترونی نمونه‌های فوق را نشان می‌دهد.

همانطور که مشاهده می‌گردد در ریزساختار نمونه، زرات بوزک‌وروندو، کربنات‌های سوزنی شکل مولایت و ذرات روش بنی‌پیوسته از پروتئین آلومینیا مونهایه می‌باشند که بوسیله تغییرات در دمای نمونه، در عمق دچار تغییرات و تغییرات در دمای نمونه، تغییرات در دمای نمونه.


