بررسی تاثیر ارتعاشات مکانیکی در حین انجام بر خواص مکانیکی و ریزساختار آلیاژ آلومینیوم A380

حسین بهدادی-تبار، حسن ثقفیان و سعید شیستری

چکیده: تاثیر ارتعاشات مکانیکی با فرکانس‌های منتفی و دانه‌های ثابت در حین انجام بر ریزساختار و خواص مکانیکی آلیاژ آلومینیوم A380 مورد بررسی قرار گرفته‌است. هدف از این تحقیق تغییر فرکانس بهبود ارتعاشات مکانیکی در آزمایشات ارتعاشات و اندام‌های آلیاژ A380 می‌باشد. این ابزار را به‌عنوان دنیا با دقت، مطالعات و تغییر فرکانس گام‌های مخصوص از 0.1 Hz تا 4 Hz پرداخته‌اند. به‌منظور اجرای این ابزار، ابتدا استفاده از تکیه‌گاه‌های با پیچ شده شده، با انجام آزمایشات مربوط به، فرکانس‌ها ریختگی‌ها در فرکانس‌های 0.1 Hz تا 4 Hz پرداخته‌اند. در نتیجه، نمونه‌های از دو کتاب در حین انجام بر ارتعاشات و عوامل ارتعاش و خلاصه‌کردن نتایج حاصل از ریزساختار و تغییرات خواص مکانیکی آلیاژ آلومینیوم A380 می‌باشد.

واژه‌کلیدی: ارتعاشات مکانیکی، فرکانس برخوردار نانوپردازی، خواص مکانیکی، آلیاژ آلومینیوم A380

1. مقدمه

استفاده از آلیاژهای جدید با هدف ارتقاء کیفیت، یکی از نقاط تولید، خصوصاً در صنایع خودروسازی می‌باشد. آلیاژهای آلومینیوم-سیلیسیم ریختگی تجاری، موردی جدید قرار با ریزساختارهای منتوسی می‌باشد. که ده‌ها ماه‌ها فشرده‌اند بر فرد آنها، دارای پیامدهایی است که به‌عنوان نسبت به زن مخلوط (دمقیت‌های سایر آلیاژهای ریختگی)، قابلیت ریختگی‌های عالی، مقاومت به سایر مقاومت در مقابل فشار هستند و به‌ونتاین ارزدهای مزایا، این آلیاژ را به‌عنوان نانوپردازی برای از پژوهش‌های فناوری آلیاژ آلومینیوم می‌باشد. استفاده مخلوط بازیابی آلیاژ آلومینیوم، به شدت به ریزساختار فناوری با در مورد کنترل اجزاء ایجاد می‌گردد و نهایتاً باید به معمولاً ساخته‌های ریزبام و هم محور در این پژوهش برخوردار خواص مکانیکی از لحاظ استحکام و

تاریخ و محل: 85/10/1
تاریخ نوشته: 1398/11/2
حسین بهدادی-تبار، دانشجوی دکتری دانشگاه مهندسی مالاتوری-دانشگاه:\nsthaghafian@iust.ac.ir
 Saddolahatabar@iust.ac.ir

درکن حسن تنسبی، استادیار دانشکده مهندسی مالاتوری، دانشگاه علوم و

شیستری سعید، استادیار دانشکده مهندسی مالاتوری، دانشگاه علوم و

شیستری سعید، استادیار دانشکده مهندسی مالاتوری، دانشگاه علوم و
به‌دلیل فقدان کمیتی بین پریمانژ شده و خواص ماده، معنی‌دار می‌باشد که نسبت‌های اصلی انتخابی در گونه‌ای مکانیکی منجر به کاهش خواص مکانیکی می‌گردد. همچنین که به‌خوبی شانس ریزش گونه‌ای ژستیون مکانیکی است. در A380 مورد بررسی قرار گرفت.

2 روش انجام آزمایشات

جهت آلیاسکی و به‌دست‌آوردن مدای‌بندی از آمونیوم با آنتی‌ساده‌بندی نام‌нам‌نام‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌نام‌نام‌نام‌نام‌нам‌نам‌нам‌نام‌نام‌нам‌нам‌нам‌нам‌نам‌نام‌نام‌نام‌نام‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌نام‌نام‌نام‌نام‌نام‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌نام‌نام‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌نام‌نام‌нام‌нам‌نام‌نام‌نام‌نام‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌نام‌نام‌нام‌نام‌نام‌نام‌نام‌نام‌нам‌нام‌نам‌نام‌нам‌нам‌нам‌нам‌نام‌нам‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌нам‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌نام‌нам‌нам‌нام‌نام‌نام‌نام‌нам‌нام‌нам‌нам‌نام‌نا
بررسی تأثیر ارتعاشات مکانیکی در حین انجام بر خواص مکانیکی و ریسمی آلیاژ آلومینیوم A380

اعتراض مکانیکی بر روی یک میز ارتعاش مجزه به قید و
بست جهت کناره قابل و با استفاده از یک مونویر و برهکتری
با قابلیت تعیین فناکس انجام شد (شکل ۲). به منظور دستیابی
سیری به مشخصات و عملیاتی که روی آبی انجام شده، نمونه‌ها
بصورتی که در جدول ۲ مشاهده می‌شود، علامت کدی داده‌اند.

به منظور انجام بررسی‌های میکروسکوپی، تعیین‌ها از قطعات
ریخته‌گری شده جدا گردیده و سپس نمونه‌ها بصورت عمودی و از
قسمت خط مکانیکی مقطع زده شدند. سپس، از هر یک از نیم
مقالم پرده شده جهت بررسی‌های میکروسکوپی، ۹ نمونه
متالوگرافی تهیه شد.

نمونه‌ها سپس از آماده‌سازی و پوست به‌خوبی با حفره‌کننده
با استفاده از محلول HF۵/۵۰۰۰/۰۰۰ در درجه سانتی‌گرادهای
۵۰۰ در برزیلی‌ها (۹۰۰ در Leica نیز مجهز به
۱۲۰۰ و ۲۰۰۰× از آن‌ها عکس‌برداری شد.
برای فاصله‌بگیرنده دندریتی (SDAS) و نمونه‌ها با استفاده روش ترسیم
خطوط برخورد بر روی تصویر متالوگرافی در هر حالت و بر طبق
فرمول (۲) محاسبه شد (۱۹).

\[
DAS = \frac{L}{N \times M}
\]

که طول خطوط برخورد، N تعداد برخوردها و M برزیلی‌ها
عكس می‌باشد.

جدول ۱. آنالیز شیمیایی آلیاژ A380 استفاده شده

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Zn</th>
<th>Ni</th>
<th>Pb</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصدوزی</td>
<td>۰.۳</td>
<td>۱.۵</td>
<td>۰.۵</td>
<td>۰.۳</td>
<td>۰.۲</td>
<td>۰.۱</td>
<td>۰.۲</td>
<td>۰.۴</td>
<td>۰.۶</td>
</tr>
</tbody>
</table>

در این تحقیق سختی سنجی به روش برینل با فشار سنجی فولادی
۲۵/۲۵mm و تریاژ ۲۵/۲۵mm در سطح و مایع از نوع آهنگیری (ساختار) انجام شد.
گالی نمونه‌ها به روش
ارش دیو و با درصد اشبات و اخلاق و عمق خرید (W) و ظاهری (W)
(فرومول (۳) انتقال‌گیری شد.

\[
DAS = \frac{L}{N \times M}
\]

جهت انجام تست کشت، نمونه‌ها از قسمت میابی قطعات انتخاب
شد (شکل ۱) و مطالب با استاندارد ASTM-B577M
اماده‌شده. لازم به ذکر است که داده‌های کشتی مربوط به هر
نمونه، مایع‌کنی از سه آزمایش کشت در همان مکان هندسی و
شرايط آزمایشی یکسان می‌باشد.

جدول ۲. راهنمای کد‌گذاری نمونه‌ها

<table>
<thead>
<tr>
<th>فناکس (رازمان)</th>
<th>کد نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>A</td>
</tr>
<tr>
<td>۱</td>
<td>B</td>
</tr>
<tr>
<td>۲</td>
<td>C</td>
</tr>
<tr>
<td>۳</td>
<td>D</td>
</tr>
<tr>
<td>۴</td>
<td>E</td>
</tr>
<tr>
<td>۵</td>
<td>F</td>
</tr>
<tr>
<td>۶</td>
<td>G</td>
</tr>
</tbody>
</table>

از آن‌جاست از تحقیقات قبلی آزمایش‌های سبس اندکی در رابطه با
تأثیر ارتعاش بر خواص مکانیکی الیاف مورد مطالعه انجام
شد. از این تحقیق سنجش از شدت تأثیر بر تغییرات
خواص مکانیکی تغییر خواص کشتی، سختی و اجزاء
میکروسختی‌های الیاف در اثر اعمال ارتعاش تأکید شد.

شکل ۱. شماتیک و ابعاد نمونه‌های ریخته‌گری شده

بعده به اندازه mm باشد

۱ Secondary Dendrite Arm Spacing
شکل ۲. شماتیک میز ارتعاش به‌عنوان تجهیزات مورد استفاده

با توجه به وجود نقشه فرکانس‌داتمه جهت تعیین تغییرات شرایط آزمایش‌گاهی (شکل ۲)، شرایط دیده در فرکانس‌داتمه به‌همه جهت اعمال ارتعاش برای کنترل الیزه‌ای یک عنصر (نظیر Al380) با توجه به ترکیب شیمیایی مختلف آنها، تعیین نشده است. از طرفی درگیر، بدلیل واسطگی شدت انرژی ارتعاشی به توان دوم فرکانس و توان اول دامنه (۱۲)، از دامنه ناپ و فرکانس‌های مختلف استفاده شده تا بتوان آثار شدت‌های مختلف از ارتعاش را بر خواص آلیز آلیز ۳۸۰، بررسی نمود.

در شکل (۴)، نمودارهای نش - کرنش مربوط به نمونه‌های ریخته‌گری شده در فرکانس‌های ۶۰۰-۲۰۰۰ نمونه داده است. داده‌های استحکام شده از نمودار مذکور، اعم از استحکامات کشی نهایی (σe) استحکام تسلیم (σy) و درصد ازدیاد طول نسبی (E%) در جدول (۲) ارائه شده است. همانگونه که ملاحظه می‌شود، میزان افزایش G از میزانی که در فرکانس G (ربی‌زه) با نسبت (۰۰۴) در جدول (۲) داده شده، در حالت اضافی به نحو (۰۲) در نموده شده است. همانگونه که ملاحظه می‌شود، همانگونه که ملاحظه می‌شود، نسبت به نمونه (۰۵) در جدول (۲) در نموده شده است. همانگونه که ملاحظه می‌شود، نسبت به نمونه (۰۵) در جدول (۲) در نموده شده است.

عدد سختی برینل مربوط به نمونه‌های استحکام شده از بخش مبانی قطعات ریخته‌گری با کدهای A-G در جدول (۴) داده شده. شدت است.

با توجه به جدول (۴)، عدد سختی برینل نمونه‌های G و F به سختی نمونه‌های A به ترتیب دارای افزایش (۲۵/۲۸۵) و (۳۰/۲۵۵) می‌باشد و می‌توان گفت که این دو نمونه در بین نمونه‌های دیگر، دارای بالاترین سختی می‌باشند.
جدول 3. مقادیر نهایی، STDEV و احراز از معیار به جدول (4) مربوط به A-G Sample Y-

جدول 4. کمیت‌های فیزیکی و مکانیکی اندازه‌گیری شده

<table>
<thead>
<tr>
<th>کد نمونه</th>
<th>BHN</th>
<th>STDEV (BHN)</th>
<th>%ΔBHN</th>
<th>SDAS (µm)</th>
<th>STDEV (µm)</th>
<th>%ΔSDAS</th>
<th>ρ(g/cm³)</th>
<th>%Δρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>770</td>
<td>13.8</td>
<td>2.1</td>
<td>36.3</td>
<td>1.7</td>
<td>1.5</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>47/7</td>
<td>0.4</td>
<td>0.7</td>
<td>2.5</td>
<td>0.14</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>C</td>
<td>51.1</td>
<td>0.8</td>
<td>0.16</td>
<td>5.8</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>D</td>
<td>242</td>
<td>0.6</td>
<td>0.13</td>
<td>13.6</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>E</td>
<td>242</td>
<td>0.6</td>
<td>0.13</td>
<td>13.6</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>F</td>
<td>242</td>
<td>0.6</td>
<td>0.13</td>
<td>13.6</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>G</td>
<td>242</td>
<td>0.6</td>
<td>0.13</td>
<td>13.6</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Standard Deviation
1-4. جریان در اطراف بازوهای دندانی
جریان قفل ماده به دو صورت جریان آرام (طیز) و یا آشفته (متخلخل) می‌باشد. این صورت جریان ماده به دلیل اعمال هیدرولیک معده ساده آتفاق می‌افتد. این اثر را از دیدن روند آن می‌آورد مکریم برای مطالعات عملیاتی است (12):

\[R_e = \frac{2 \text{mpfa}}{\eta} \]

که بسته خواهد داشت:

\[\lambda \text{ قطر بازوهای دندانی} \]

\[\text{d} \text{ دامنه (m))} \]

\[\text{فرکانس (Hz))} \]

\[\text{Campbell (1917)} \]

\[\text{عوامل نمودار در صورتیکه عدد ریمانلی زیر 10} \]

\[\text{باشند حالت جریان به صورت آرام، برای مقادیر بالای 10} \]

\[\text{برهنه و بین دو عدد دارای حالت مخاطب می‌باشد. محدوده عدد ریمانلی بستگی به دو عیار از یک یا دو عدد} \]

\[\text{a=50} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]

\[\text{جریان قفل بازوی دندانی را در حالت مخاطب می‌بیند. این باعث مشخص است که جریان ماده به دو صورت بازوی دندانی و نیز برون‌ریختن حالت جریان است.

\[\text{d=3} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]

\[\text{جریان ماده بازویی در حالت مخاطب می‌بیند. این باعث مشخص است که جریان ماده به دو صورت بازوی دندانی و نیز برون‌ریختن حالت جریان است.

\[\text{d=3} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]

\[\text{جریان ماده بازویی در حالت مخاطب می‌بیند. این باعث مشخص است که جریان ماده به دو صورت بازوی دندانی و نیز برون‌ریختن حالت جریان است.

\[\text{d=3} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]

\[\text{جریان ماده بازویی در حالت مخاطب می‌بیند. این باعث مشخص است که جریان ماده به دو صورت بازوی دندانی و نیز برون‌ریختن حالت جریان است.

\[\text{d=3} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]

\[\text{جریان ماده بازویی در حالت مخاطب می‌بیند. این باعث مشخص است که جریان ماده به دو صورت بازوی دندانی و نیز برون‌ریختن حالت جریان است.

\[\text{d=3} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]

\[\text{جریان ماده بازویی در حالت مخاطب می‌بیند. این باعث مشخص است که جریان ماده به دو صورت بازوی دندانی و نیز برون‌ریختن حالت جریان است.

\[\text{d=3} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]

\[\text{جریان ماده بازویی در حالت مخاطب می‌بیند. این باعث مشخص است که جریان ماده به دو صورت بازوی دندانی و نیز برون‌ریختن حالت جریان است.

\[\text{d=3} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]

\[\text{جریان ماده بازویی در حالت مخاطب می‌بیند. این باعث مشخص است که جریان ماده به دو صورت بازوی دندانی و نیز برون‌ریختن حالت جریان است.

\[\text{d=3} \text{mm} \]

\[\text{b=10} \text{mm} \]

\[\text{C=9} \text{mm} \]

\[\text{امکان می‌باشد که تا 1500} \text{Hz} \]

\[\text{به همراه بازوی دندانی باز و ضعیف آرام} \]

\[\text{500} \text{Hz} \]
در حقيقة، [120] آرائه شده از سوی محققان دیگر (آئین) و جراح اول راه حل آن دانه در خلاصه جهت سطح سرد از را موثر تایید قرار داد. این دانه ی سیب ایجاد بارشی از ذرات جامد به طرف مداح شده که کمک زیادی به تشکیل منطقه هم محور مزکر در شمش می‌کند.

همان‌گونه که در شکل (7- حرف A) مشاهده می‌شد، ریز‌ساختار نمونه سرد شده در علاوه استاتیک صورت دندانی یافته و شاهد نمایش قدرتی بود که در مناطق بین‌دندانی می‌باشند، ولی با اختلال فرانکاس از تابعی به فرکانس پراز جدایی در سطح [18], هزینه و برق توانولفی همکار شده و پیمان آن را با سایر تنش‌ساختارها با خاصیت نرم‌کننده و مکانیکی همکار بود (شکل (7- حرف D) و (7) [112].

این با بالاترین آبادگی نیز تلقی昇 کرده، در ابتدا مکانیزم برای پیمان مزکر عمل جراح کرد. ایجاد تلاطم‌های ساده مکانیکی نظر صیبله زدن به جا باید، ایجاد تلاطم در سطح تابع سه و یا حباب زایی در سطح مداب، سبب افزایش اثر بخشی می‌شود

[111]

در زمان انجام کاهش در زمان انجام

زمان کل انجام پلاژی برای مکانیزم در ابتدا اول انتها بکار می‌رفته که کاهش می‌باشد [101]. مکانیزم‌های نشست گیرش که به تأخیر خاصی ات یکشی می‌شود

(4-2-1)

کاهش به زمان انجام

ساختار بیداری می‌تواند از طریق فوق‌بی‌بی‌بی‌بی اکثر که در حین اعمال جراحی شرکتی منفی در خرید از مراحل می‌دهد، بوجود آید.

(4-2-1)
شکل ۸ ساختار میکروسکوپی نمونه‌های (الف) A، (ب) C، (ج) G، مشاهده می‌شود که با افزایش فرکانس، ساختار همگن ایجاد می‌شود و با توجه به جدول (۵) و سختی بالاتر سیلیسیم نسبت به آلومینیوم، افزایش عدد سختی امری قطعی است.

کوچکتر می‌شود. بدن تریب ساختار پوستکیک طریف‌تری شکل می‌گیرد که این عمل به‌رسی و تریب سرودکردن نام دارد.

شکل گیری و تغییرات چگالی
با افزایش فرکانس ارتعاش و تندیک شدن به حالت جدی آستانه توربیک (قسمت بالایی منطقه هاویر خورده در شکل (۳)) میزان حفرات کمتر شده و چگالی افزایش می‌یابد (شکل (۹)). افزایش چگالی نمونه‌ها، مخصوصاً در قطعات ریختگی برگ و نیز شمش‌هایی که از از تولید عملیات کار سرد و یا ترمومانیکی کار می‌گیرند، بسیار سودمند خواهد بود. مهم‌تر از اینکه قطعاتی که تغییرات چگالی دارند، تغییرات چگالی نمونه بوده و این عمل به افزایش چگالی نمونه و افزایش چگالی نمونه منجر می‌شود.

آنها به طریقی جوانه‌های هتروزون می‌گردند.

گزارش شده است که با افزایش حرارت سرد کردن (و یا کاهش در جدول (۴)) همراه با کاهش حفرات و تخلیه و افزایش سطح مقطع موثر انتقال بار در نسبت کشش خواهد بود. به‌طور استفاده از ارتعاش ارتعاش تغییرهای مورد نیاز و نیز حجم افزایش نیاز دارد که از جمله این عمل به افزایش چگالی نمونه و افزایش چگالی نمونه منجر می‌شود که به‌طور استفاده از ارتعاش ارتعاش تغییرهای مورد نیاز و نیز حجم افزایش نیاز دارد که از جمله این عمل به افزایش چگالی نمونه و افزایش چگالی نمونه منجر می‌شود. می‌باشد که به‌دنیای چگالی در قطعات ریختگی، ناشی از عدم ورود سداب به حرارت‌های نسبی تشکیل سند دندان‌ها (در اثر افت‌های می‌باشد. ولی با بکار بردن ارزی ارتعاشی زاویه بر کاوش کل اندام داتان در اثر شکسته شدن دندان‌ها، بسیار زیادی برای این عملی از

۱ Quench Modification
طرح افزایش تغذیه جرمی موتوری، خصوصاً در ایالاها و دامنه
انجمن و سبک، بی‌توجهی می‌آید.

جدول 5. عناصر آمونیوم سیلسیس

<table>
<thead>
<tr>
<th>عناصر</th>
<th>آمونیوم</th>
<th>سیلسیس</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV 120-140</td>
<td>HV 120-140</td>
<td></td>
</tr>
</tbody>
</table>

نتیجه‌گیری

یک بقا افزایش فرکانس ارتعاش از صفر تا ۴۰۰ Hz (شدت ارتعاش)، و هر سه با افزایش استحکام هنابای کشی، استحکام سلیم و درصد ازبند G طول نسبی افزایش می‌یابد و به نحوی که \(\sigma_T \) و \(\zeta \) و \(\varepsilon \) در رخت‌های در فرکانس، نسبت به نمونه A (رخت‌های در حالت استاتیک بدون مواد افزودنی) به ترتیب ۳۵٪،۳۳٪ و ۴۳٪ افزایش می‌یابد و به مراتب آن، درصد ازبند طول نسبی نمونه A فرکانس، با افزایش در خود استاتیک به عدد نمونه G سعی می‌رسد.

یک بقا افزایش نمونه‌ها در فرکانس افزایش می‌یابد و به نحوی که \(\sigma_T \) و \(\zeta \) و \(\varepsilon \) در رخت‌های در حالت استاتیک بدون مواد افزودنی (رخت‌های در خود نمونه‌ها) به عدد نمونه G به دو نمونه می‌رسد.

یک بقا افزایش نمونه‌ها در فرکانس به عدد نمونه G به دو نمونه می‌رسد.

یک بقا افزایش نمونه‌ها در فرکانس به عدد نمونه G به دو نمونه می‌رسد.

یک بقا افزایش نمونه‌ها در فرکانس به عدد نمونه G به دو نمونه می‌رسد.

ساختار نمونه A با بهره از طرف دیگر تا حذف خودکار به توزیع مجدد فازهای تئوریک در دیژه ایالاها زمین به کمک. از این دسته از سیستم‌های الیزی که اختلاف بین چگالی اجزای تشکیل دهنده پایین بوده و تمایل به جداش، نظام‌های باشد، نشان ارتعاش در توزیع مجدد فازهای بسیار مهم خواهند داشت.

با مقایسه ساده آنی بین سختی آمونیوم سیلسیس خالص (جدول ۵)، نشان دادن مجدافا و ملایم تر شدن برای

جدایی مشترک (شکل ۷) ملاحظه می‌شود که ریزخراش‌های A با پوششی تجربه علت بی‌توجهی در مناطق خاص، غیرمهم‌کننده می‌باشد، ولی با اعمال افزایش ریزخراش فرکانس آن توزیع و پراکندگی فاز بی‌توجهی بسیار مهم می‌شود. با ایجاد ریزخراش‌های همگن، افزایش سختی صابعی، مورد انتظار می‌باشد.

بدین ترتیب، با کاهش نرخ جدایی ریز در نقطه‌های لازمه به افزایش میزان ابزار، نسبت کاهش زمان عملیات حاریت هموگرایی می‌گردد. در حقیقت اعمال ارتعاش از طریق فرایند

