بررسی ریز ساختار و مقاومت فرسایشی کامپوزیت‌های زمینه AlTi

تقویت شده پوسیله ذرات SiC و Al2O3

مهره صیادی، محمدضاور طرقبی نژاد و محمد محسن مشکار

چکیده: در تحقیق حاضر، شرایط ساخت و خواص فیزیکی و مکانیکی کامپوزیت‌های زمینه آلومینیومیوم تولید شده به روش استخوانگری، گروه مورد مطالعه قرار گرفته است. زمینه کامپوزیت‌ها با استفاده از پودر آلومینیوم به همراه 10 درصد وزنی پودر تیناتیوم تهیه شد. فاز تغییرات گردیده از جنس ذرات کاربنی سیلیسیوم و با آکسید آلومینیوم با اندازه متوسط 5 میکرومتر به مقدار 10 درصد حجمی انتخاب گردید. پودرها توسط طریقه شیشه‌پاشی در محیط گازی از جنس آلومینیوم شیشه شد. سپس چهارهای نهال تحت فرآیند استخوانگری گرده و خواست. بررسی ریزساختار کامپوزیت‌های تولید شده نشان داد که ذرات قطبی کنده سرامیکی، به صورت گسترشی در زمینه نوزع شده‌اند. مهیچه ساخت آنزیمی XRD نمایش داد که کامپوزیت‌پس از انجار فرآیند استخوانگری گم دور نشان داد و در زمینه نشکل Al3Ti که این پدیده که به وسیله تحقیقات دیده شده است، در ساختار کامپوزیت‌ها، خواص فرسایشی و ریزسختی بهتری از خود نشان داد.

واژه‌های کلیدی: استخوانگری، گرم پودر، کامپوزیت‌های زمینه AlTi، مقاومت سایشی، ترکیبات بین فلزی

مقدمه

تاکنون تحقیقات بی‌شماری در جهت ساخت و بهبود خواص کامپوزیت‌های زمینه آلومینیومیوم، صورت گرفته است. این دسته از مواد با تکیه بر روشهای دیگر و با روش‌های باحال جامد، تولید شده و انجام پاسخ می‌آید. به آنها اینکه خواص بهینه و مطلوبیت مخاطب است. این اصطلاح با توجه به قواعد مناسب، گچبری سنگین و مقاومت به سایر علائم می‌خواهد. پاسخ اینکه تیتانیوم از جمله موادی است که در سیستم‌های آلیزی آلومینیوم مورد توجه زیادی قرار گرفته است. از AlTi پیشتر برای اصلاح دانه‌بردار آلیزه آلومینیوم استفاده می‌شود. اما به دلیل اینکه خواص مکانیکی مطلوبی از خود نشان می‌دهد.

روش تحقیق

پودر آلومینیوم خالص تجارتی (اندازه متوسط 2.5 μm) درصد) تولید شده بود. تور میل شیشه مشابه وزنی 100 میلی‌گرم درصد تولیدی شرکت MERK با همراهی یکی از پودرها Al2O3 و SiC (اندازه زیر 99/5 خلصه 96 درصد) تولید کرده شد. (اندازه زیر 99/5 خلصه 96 درصد) تولید شرکت ZA1 (اندازه زیر 99/5 خلصه 96 درصد) تولید شرکت MERK
نتایج و بحث

شکل ۱: تصویر میکروسکوپ الکترونی (SEM) از ریزساختار سیال. سیلیس آلومینیوم سیگوئیت شده با ۵ درصد حجمی ذرات Al۲O۳ و ۵ درصد حجمی ذرات SiC (عدم تغییر متوسط μm ۵ و ۵ μm ۵ و با ۴۰ درصد حجمی ذرات SiC آلومینیوم آلیکسیسیک) در اتصال از آرگون مخلوط شده. توزین در حدود ۷۵ برابر که مقدار تیتانوم در کامپوزیت یا آب ۵۰ درصد وریتی و مقدار ذرات سرامیکی یا آب ۱۰۰ درصد حجمی کل باشد. سپس پودرها مخلوط شده، به دستهای محفظه آلومینیوم استوانه شکل ریخته شد. مقدار تغییرات ذرات آلومینیومی در شکل قاب ساخته شد. ذرات آلومینیومی ذرات آلومینیومی سیلیسیت آلومینیومی در شکل ۲۰ آف و پر شده است. ذرات سرامیکی نسبتاً به صورت یکجا در زمینه‌های دام‌یاب توزیع شدند، اما افزایش فرصت حجمی آلومینیومی نصب شده موجب شده است تا مقدار تغییرات با پوشش شدن ذرات سرامیکی به وجود آمده آلومینیومی ۲۰ درصد آلومینیوم افزایش گرفت. با مشاهده در تصاویر میکروسکوپی می‌توان نتیجه گرفت مخلوط‌سازی با پودر آلومینیوم و ذرات سرامیکی تغییرات ذرات آلومینیومی و تغییرات ذرات آلومینیومی از آرگون کاستی شد. مقدار تغییرات با بررسی آلومینیوم در حین خشکه‌دایی به مواد درک با ریز ناخته‌های حکم و یکجا در شدت ورود سیلیسیت به میزان بالا در ساخته شده است. سیلیسیوم و زمان‌ها به بُرای بررسی امکان تغییرات آلومینیومی به هنگام پیپرگر و اکستروفیزیون آلیکسیسیک EDS در ذرات آلومینیومی انجام گرفت. بایان اکستروفیزیون آلیکسیسیک EDS در ذرات آلومینیومی با اندازه ای به‌تدریج رشد یافته در آن الحاق شدند. در حقیقت با پیش‌گرمر نمودن و انجام نیبری شکل مواد به‌پوسته ناشی از آرگون کاستی شد. تغییرات امکان تغییرات آلومینیومی در فواصل کوانتایکی از ذرات پودر تیتانوم آغاز خواهد شد.

شکل ۲: تصویر SEM کامپوزیت‌های آلومینیومی تقویت‌شده با SiC (الف) ۵ درصد حجمی ذرات Al۲O۳ (ب) ۵ درصد حجمی ذرات SiC.
ب

شکل ۲. تصویر SEM کامپوزیت زمینه آلومینیومی تقویت شده با Al-Ti

(الف) ۱۵ درصد حجمی ذرات و SiC (ب) ۲۰ درصد حجمی ذرات و Al$_2$O$_3$

الف

شکل ۳. آنالیز XRD زمینه آلومینیومی مجاور به ذرات وoder

تیناتیوم

با توجه به خلاصه اندک تیناتیوم در آلومینیوم در شرایط تعادلی و

ناپایداری محلول جامد تشکیل شده، انجام فعالیت افزایشی و

تغییر ترکیبات ایندارتر در زمینه پس از انجام فرابند اکسترژون گری,

دور از انظار، نخواهند بود. آلیز XRD نمودهای آلومینیومی حاوی

عنصر تیناتیوم پس از اکسترژون گری پودر، شکل (۴). نشان داد که در

آنها ترکیبات بین فازی به شکل

در حقيقة ما توان نتیجه گرفت که انجام فرابند غیر تعادلی اکسترژون

گری پودر برای تشکیل محلول جامد (آلفا) قوی، اشیاب در نمودهای

گری پودر که نپایداری می‌باشد. نباید این انجام و اکستراژون به

ترکیبات بین فازی به صورت Al$_2$O$_3$ در زمینه به وجود آمد است. اما

همچنان که مشاهده می‌شود هنوز مقداری تیناتیوم بالا مانده‌ر دار

وجود دارد. این امر از نظر ناشری در شرایط پودر تیناتیوم

اولیه و نیز ناکافی بودن شرایط اکسترژون گری پودر برای نفوذ

همه اتمهای تیناتیوم در زمینه آلومینیومی باشد. زیرا ضرب نفوذ

تیناتیوم در آلومینیوم در دامی ۴۰۰ درجه سانتی‌گراد به‌جای است

10^{-11} m²/s

شکل ۴. نمودار Al-Ti با فاصله بعد از اکسترژون

جدول (۱) میزان تخلخل و دانسیتی اندازه‌گیری شده نمودهای از نشان

می‌دهد. همان‌طور که محاسبات نشان می‌دهد، انجام فرابند اکسترژون

گری پودر موجب خواهد شد تا دانسیتی نمودهای دانسیتی تری Al-5SiC

زا دانسیتی نمودهای Al خالص و کاملاً به دانسیتی تری برای شد. افزایش میزان فاز تقویت کنتنده

سرامیکی، احتمال کاهش حس و ایجاد حریفه‌های ریز در فصل

مشارکت ذرات و زنده ناپیوند می‌باشد. نباید این میزان تخلخل در

ابن نموده‌ها فاصله خواهد گرفت.

با افزایش میزان فاز تقویت کنتنده در زمینه، انعطاف‌پذیری کامپوزیت‌های

زنده آلومینیومی کاهش یافته است، جدول (۱). در حقيقة ذرات

سرامیکی سخت پراکنده شده در زمینه، تغییر شکل پلاستیک ماده

مرکز را محدود ساخته‌اند. مقدار درصد افزایش طول نموده

Al-Ti را محض ساخته‌اند.
اکستروود شده به ۹۴٪ رسیده است که بسیار کمتر از درصد افزایش طول آلومینیوم خالص می‌باشد. در این آبی‌ها، افزایش کسر حجمی فاز تری به صورت ترکیبات بین فلزی پراکنده شده در زمینه و حضور ذرات تیناتیوم باقیمانده با اندازه نسبتاً بزرگ موجب کاهش بیشتر چکش خواری شده است.

مواد آلومینیومی

جدول ۱. خواص فیزیکی و مکانیکی کامپوزیت‌های زمینه آلومینیومی

<table>
<thead>
<tr>
<th>مواد</th>
<th>تخلخل %</th>
<th>% E</th>
<th>H (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0</td>
<td>10</td>
<td>78 ± 2</td>
</tr>
<tr>
<td>Al-5Al₂O₃</td>
<td>10.6</td>
<td>105</td>
<td>78 ± 6</td>
</tr>
<tr>
<td>Al-10Al₂O₃</td>
<td>30.6</td>
<td>74</td>
<td>74 ± 5</td>
</tr>
<tr>
<td>Al-15Al₂O₃</td>
<td>104.3</td>
<td>38</td>
<td>83 ± 4</td>
</tr>
<tr>
<td>Al-20Al₂O₃</td>
<td>308</td>
<td>83</td>
<td>84 ± 4</td>
</tr>
<tr>
<td>Al-5SiC</td>
<td>174</td>
<td>83</td>
<td>76 ± 4</td>
</tr>
<tr>
<td>Al-15SiC</td>
<td>304</td>
<td>31</td>
<td>94 ± 10</td>
</tr>
<tr>
<td>Al-10Ti</td>
<td>404</td>
<td>31</td>
<td>94 ± 10</td>
</tr>
<tr>
<td>Al-10Ti-5Al₂O₃</td>
<td>777</td>
<td>41</td>
<td>100 ± 8</td>
</tr>
<tr>
<td>Al-10Ti-10Al₂O₃</td>
<td>383</td>
<td>33</td>
<td>100 ± 8</td>
</tr>
<tr>
<td>Al-10Ti-15Al₂O₃</td>
<td>684</td>
<td>33</td>
<td>100 ± 8</td>
</tr>
<tr>
<td>Al-10Ti-5SiC</td>
<td>411</td>
<td>31</td>
<td>103 ± 6</td>
</tr>
<tr>
<td>Al-10Ti-15SiC</td>
<td>615</td>
<td>33</td>
<td>110 ± 6</td>
</tr>
</tbody>
</table>

شکل ۵. تصویر کامپوزیت Al-10Ti-10Al₂O₃ بعد از اکستروود گرم پودر

یک توپه داشت به‌طور روش‌خراش از طریق توزیع یک‌ویک سرامیکی در کسر جرمی بالای فاز تقویت‌کننده و با کاهش تخلخل می‌تواند از افت شدید انعطاف‌پذیری ماده کامپوزیتی گل‌لوگری نماید.

شکل (۶) سطح شکست نمونه‌های کششی را بعد از تری اکسترود گرم پودر تشان می‌دهد. شکل (۶) آلفا مربوط به سطح شکست آلومینیوم خالص است. تخریب در این نمونه به صورت شکست نرم بوده و حضور پستی و بلندی‌های فراوان ناشی از تغییر شکل بالاستیک و حفره‌های ریز به‌هم پیوسته در آن کامل‌المشهود می‌باشد.

شکل (۶) سطح شکست نمونه‌های Al-10Ti-15SiC ربیزی می‌باشد. آلومینیوم که بررسی سطح شکست این ماده مرکب با یک‌گزمانی بالا آشکار کرده تخریب به‌صورت مخلوطی از شکست نرم و تر و تر بوده است. این مشخصه از ویژگی‌های موجود در آلومینیوم فلزی می‌باشد. در اینجا تغییر شکل بالاستیک زنده نرم ثانوی در اکسترود شده در طاری‌ها محدود شده است.

شکل ۶. تصویر SEM سطح شکست نمونه‌های کششی ال‌ف (آلمینیوم خالص ب) و حفره‌های ناشی از کنده شدن Al-10Ti-15SiC در آزمایش کشش با فلش و میانگین برش نشان داده است.
حضور ذرات سرامیکی سخت و ترکیبات بین فازی دچار تغییر شکل بلافاصله و فراسایش شده است. آنتلایز سطح بین فولادی عتیقه بر روی نمونه آلومینیوم خالص نشان داد که مقدار زیادی آلومینیوم از نمونه به بین انتقال نکرد. شکل (8). لازم به ذکر است که اضافه نمونه فازهای سخت به آلومینیوم سیلان یافته شده از نظر فاز فراسایش و تهیه مجدد و مقاومت سایشی ماده مربوط به هدف شده. تصویر براده‌های حامل از فراسایش در شکل (9) دیده می‌شود.

بیان می‌شود که بزرگ حامل از فراسایش نشان دهنده حضور همزمان مکانیزم‌های جنس‌گرایی و لایه‌بردار ی از سطح است. اما وجود براده‌های ورق‌های شکل جاگی از نظر که مکانیزم لایه‌برداری در فرآیند سایش غالب بوده است. این حضور مکانیزم سایش جنس‌گرایی، به دلیل جوش خودن سطح بین فولادی و ماده مرکب، بیان‌های موضعی در حال ساخت و وجود می‌اید و سپس ماده با کنده دهن از یک سطح به سطح دیگر انتقال خواهد یافت. آنتلایز سطح بین فولادی عتیقه حس عبور از آلیاس Al-10Ti سندرم براده‌های فریکسی یافته بین فولادی است شکل (10).

پایه نمونه‌های کامپوزیتی را بر پرگامباسی مختلف نشان می‌دهند. آنتلایز شکل بلافاصله از این سطح مشاهده است. حضور شیرهای موازی در شکل (11) و گودشند سیستم‌سازی (Friction) ناشی از آنتلایز سطح بین فولادی (Wear) از مکانیزم لایه‌برداری ی از سطح می‌باشد. مکانیزم لایه‌برداری در آزمایش فراسایش شال جوانویی ترکه‌های ریز در زیر سطح سایش است که به دو پوسته و به موارد سطح رشد می‌نماید و باعث کنده شدن براده‌های ورق‌های شکل می‌شود. شکل (12) نشان می‌دهد که سطح بین فولادی مورد استفاده در آزمایش فراسایش نیز به دلیل
احتمال زده بامدها مركب‌کردن را متولی می‌شوند. همین امر موجب مقاومت بیشتر ماده در شرایط اعمال نوروزایی شده می‌گردد. با توجه به شکل (11) می‌توان نشان داد که ماده

سی سی تا به یک ماده جدید SiC از ماده آلومینیومی تقویت‌شده با ذرات

کامپوزیت‌های آلومینیومی

Al2O3، ریترای هر فرسایش مناسب‌تری از خود نشان می‌دهد. همچنین در موارد مکبر حاوشی عنصر آلاینگی Ti به دلیل استفاده بهتری زیسته‌های از این تشکیل ترکیب

بهبود پافته‌ای است.

نتیجه‌گیری

1- با استفاده از فرایند استرکژون گرم پودر می‌توان به توزیع بکداشتی

از ذرات تقویت‌کننده در زیسته آلومینیومی دست یافت. ضمن اینکه

دستیابی و سیلول‌های مخلوط محصولات تولید شده با این روش در محدوده

سیال خون قرار دارد.

2- آنالیزادی شکل ترکیب‌های فنیل ترکیبی

Al2Ti به صورت درجا

Al-Ti با استفاده از فرایند استرکژون گرم مخلوط پودرهای عنصری

الومینیوم و نیکلیوم ایجاد شد. با تشکیل ترکیب فنیل ترکیبی از محلول

Al-Ti، فلز شپشی با حالت پایدار می‌رسد.

3- فرآیند حجمی ماده سرامیک الومینیوم و کربن سیلیسیم و

Al2Ti تشکیل در زیسته سختی و مقاومت به فرسایش زیسته

الومینیوم را افزایش می‌دهد. در حالت که میزان اریدی طول کشی

نمی‌شود با کم حجمی فلز تقویت کننده رابطه مکسوس دارد. تأثیر

نامطومی فلزهای سرامیک بر تردی محصول و کاهش انعطاف‌پذیری

مواد مکبر، با توجه به تاسیف میکروسکوپی سطوح شکست نیز قابل

مشاوه است.

مراجع

در حقيقة با زبان شدن کسر حجمی فاز تقویت کننده، سختی ماده

مرکب نیز افزایش می‌یابد. در نتیجه تغییر شکل پلاستیک و

لاپیدرایز از ماده سخت‌تر و جسم‌داده سطح کامپوزیت به فولاد

کمتر خواهد شد. ضمن اینکه ذرات سرامیکی بخش عمده‌ای از پاره‌ای

