بررسی ریز ساختار و مقاومت فرسایشی کامپوزیت‌های زمینه Al-Ti

Al2O3 و SiC
tقویت شده بوسیله ذرات

مهدی صیادی، محمد‌پردا طرقی‌نژاد و محمد محسن مشکیار

چکیده: در تحقیق حاضر، شرایط بافت و خواص فیزیکی و مکانیکی کامپوزیت‌های زمینه آلومینیومی مورد بررسی قرار گرفته است. زمینه کامپوزیت‌ها با استفاده از پودر آلومینیوم به مهاره 10 درصد وزنی پودر اکسیدی شده تهیه شده تا مقادیر سختی و با اکسید آلومینیوم با اندازه متوسط 5 میکرون در 15 و 50 درصد حجمی انتخاب گردید. پودر‌های تشکیل دهنده ماده مرکب پس از مخلوط سازی در محفظه‌های از جنس آلومینیوم روغنید شد، سپس در فرآیند حاوی تحت فرآیند استوانه‌ای گیر در قرار گرفت. بررسی ریز‌ساختار کامپوزیت‌ها تولید شده نشان داد که در محفظه‌های از جنس آلومینیوم روغنید شده تهیه کننده سرامیکی، به صورت کنواخت در زمینه توزیع شده شد. همچنین اندازه‌های XRD و همچنین RPD سرامیکی کامپوزیت‌های پس از انجام فرآیند استوانه‌ای گیر در زمینه تحقیق ضریب آشکار خاص ترکیبات آلیاژی فاقد و ترکیبات تکانی فاقد و ترکیبات مطلوب کاهش انعطاف‌پذیری آلومینیوم را گردید. ضمن اینکه ماده مرکب طبق نوع ترکیبات خاص و ترکیبات تشکیل دهنده سرامیکی، خواص فرسایشی و ریز‌ساختار بهتری از خود نشان داد.

واژه‌های کلیدی: استوانه‌ای گیر، کامپوزیت‌های زمینه Al-Ti، مقاومت سایشی، ترکیبات بین فاژی، Al2O3، Ti3Al، Ti3Al3، Ti3Al5

1. مقدمه

تاکنون تحقیقات بی‌شماری در جهت ساخت و بهبود خواص کامپوزیت‌های زمینه آلومینیوم، صورت گرفته است. این دسته از مواد با تکیه بر روش‌های نوینی و با روشهای حالي جامد تولید شده و آنچه پدیده می‌آید که با خواص مفیدی هندسی مطلوب مانند استحکام بالا، صلبیت مناسب، گچی‌بری پایین و سختی و مقاومت به سایر علائم بهره‌برداری می‌تواند تیتانیوم از جمله عناصری است که در سیستم‌های آلیاژی آلومینیوم مورد توجه زیادی قرار گرفته است. [15] از Ti بیشتر برای اصلاح دانه‌بردی آلیاژ‌های آلومینیوم استفاده می‌شود. اما به دلیل اینکه خواص مکانیکی مطلوبی از خود نشان می‌دهند.

2. روش تحقیق

بودر آلومینیوم خالص تجاری (اندازه متوسط 6.5 μm و دمای زیر 99/5 درصد) تهیه شده در شرکت بالکنیا تولید شده و بر اکسید آلومینیوم (اندازه دانه 98 درصد) تولید شده که به همراه یکی از پودرهای زرات (اندازه Al2O3 و MEK)
نتایج و بحث
شكل 1 تصادی میکروسکوپی الکترونی (SEM) از ریزساختار ماده مکسیلات آلومینیوم سیسیک، در اتمسفر متوسط آلیاژ SiC، در اندازه میکروسکوپی با فرکانس ۵ و ۱۰۰ MRI درصد حجمی ذرات SiC، متوسط اندازه ذرات آرگون مخلوط شدن. توزین بوده‌ها به گونه‌ای بود که مقدار تیناتیوم در کامپوزیت برابر با ۱۰ و ۵۱۵ و ۱۰۰ MRI درصد حجمی کل بود. بسیاری یون‌های سیسیک مخلوط شده در سطح ریزساختار ماده، دو درصد ذرات SiC و Al2O3 توزین تکثیر آنها دارد. در آلومینیوم توزین ذرات به شکل همانند و یکپارچه شده‌اند. بیش از ۷۰ درصد آلومینیوم در شکل همانند با توزین ذرات SiC و Al2O3 به شکل همانند شده است. همچنین، گروه‌های آلومینیوم در شکل همانند با توزین ذرات SiC و Al2O3 به سرعت مناسبی به سمت بافت اضافه شده است. در این مطالعه، ۱۵۵ میکرون بر دیگر دو بوده است. این مطالعه به ساختن نمونه‌های کامپوزیت بی‌سیسیک ارائه می‌گردد. ارائه N557M-84E1 ساخته شد طول سنجه در نمونه‌های کشی ۱۷ میکرون‌های طول در نمونه‌های میکروسکوپی ارائه می‌گردد.

الف

شکل 1 تصویر SEM کامپوزیت‌های آلومینیوم سیسیک، در اندازه میکروسکوپی با فرکانس ۵ و ۱۰۰ MRI درصد حجمی ذرات SiC به‌صورت بافت کامپوزیت‌های آلومینیوم سیسیک، در اندازه میکروسکوپی با فرکانس ۵ و ۱۰۰ MRI درصد حجمی ذرات SiC، متوسط اندازه ذرات آرگون مخلوط شدن. توزین بوده‌ها به گونه‌ای بود که مقدار تیناتیوم در کامپوزیت برابر با ۱۰ و ۵۱۵ و ۱۰۰ MRI درصد حجمی کل بود. بسیاری یون‌های سیسیک مخلوط شده در سطح ریزساختار ماده، دو درصد ذرات SiC و Al2O3 توزین تکثیر آنها دارد. در آلومینیوم توزین ذرات به شکل همانند و یکپارچه شده‌اند. بیش از ۷۰ درصد آلومینیوم در شکل همانند با توزین ذرات SiC و Al2O3 به شکل همانند شده است. همچنین، گروه‌های آلومینیوم در شکل همانند با توزین ذرات SiC و Al2O3 به سرعت مناسبی به سمت بافت اضافه شده است. در این مطالعه، ۱۵۵ میکرون بر دیگر دو بوده است. این مطالعه به ساختن نمونه‌های کامپوزیت بی‌سیسیک ارائه می‌گردد. ارائه N557M-84E1 ساخته شد طول سنجه در نمونه‌های کشی ۱۷ میکرون‌های طول در نمونه‌های میکروسکوپی ارائه می‌گردد.
بررسی ریز ساختار و مقاومت فرسایشی کامپوزیت‌های زیمنه Al-Ti \(\text{Al}_2\text{O}_3 \) و \(\text{SiC} \) تقویت شده به‌وسیله ذرات های زیمنه اسپینال

۱۵۰۰۰

شکل ۲. تصویر SEM کامپوزیت زیمنه آلومینومیوم تقویت شده با Al-Ti

الف)

الف) ۱۵ درصد حجمی ذرات \(\text{Al}_2\text{O}_3 \) و SiC (ب) ۲۰ درصد حجمی ذرات Al-Ti

بیشترین نیازهای [۱۴۱۵] ذرات پودر بیشتر در نتیجه تینتیوم در شرایط تغذیه و ناپایداری مخلوط جامد تشکیل شده، انجام فعال و انفعالات بین و تشکیل ترکیبات ابتدایی در زیمنه یکی از انجام فرابند اکستروزن گرم، دور از انظار نخواهد بود. Al-Ti آلیز XRD نمونه‌های آلومینومیوم حاوی عنصر تینتیوم پس از اکستروزن گرم پودر، شکل (۴). نشان داد که در آنها ترکیبات بین فازی به شکل Al-Ti تشکیل شد است.

در حقيقة می‌توان نتیجه گرفت که انجام فرابند عبری تعادلی اکستروزن گرم پودر موجب تشکیل محلول جامد Al(Ti) قوف شده در نمونه‌ها گوردید که ناپایدار می‌باشد. بنا براین در انجام پایداری به‌دست اورکیپات بین فازی بی صورت Al/Ti در زیمنه به وجوش امیده است. اما همچنان که مشاهده می‌شود هموگ مقدار تینتیوم بالا مانده در زیمنه وجود دارد. این امر می‌تواند ناشی از درشت بودن ذرات پودر تینتیوم اولیه و نیز تاکید بودن شرایط اکستروزن گرم پودر برای نفوذ کامل هم‌هیه تینتیوم در زیمنه آلومینومیوم باشد. زیرا ضرب نفوذ تینتیوم در آلومینومیوم در دمای ۴۰۰ درجه سانتی‌گراد ناجی است (۰) \(5×10^{-11} \text{ m}^2/\text{s} \)
در اکسترویت‌های شش به ۷۴٪ رسیده است که بسیار کمتر از درصد افزایش طول آلومینیوم خالص می‌باشد. در این آلیاژها، افزایش کسر حجمی فاز ترد به صورت ترکیبات بین فلزی پراکنده شده در زمینه و حضور

شکل ۵. تصویر SEM کامپوزیت AlTi-10Al۲O۳ بعد از اکسترویت

جدول ۱. خواص فیزیکی و مکانیکی کامپوزیت‌های زمینه آلومینیومی

<table>
<thead>
<tr>
<th>آلومینیومی</th>
<th>ماده</th>
<th>تخلخل (plied)</th>
<th>%E</th>
<th>H</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Ti</td>
<td>۰</td>
<td>۱۹۱</td>
<td>۵۸±۲</td>
<td></td>
</tr>
<tr>
<td>Al-5Al۲O۳</td>
<td></td>
<td>۰.۵۲</td>
<td>۱۰۱۵</td>
<td>۸۶±۵</td>
<td></td>
</tr>
<tr>
<td>Al-10Al۲O۳</td>
<td></td>
<td>۰.۶۲</td>
<td>۹۴±۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-15Al۲O۳</td>
<td></td>
<td>۰.۷۲</td>
<td>۷۹±۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-20Al۲O۳</td>
<td></td>
<td>۰.۸۲</td>
<td>۶۸±۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-5SiC</td>
<td></td>
<td>۵۵</td>
<td>۱۷۷</td>
<td>۷۱±۲</td>
<td></td>
</tr>
<tr>
<td>Al-15SiC</td>
<td></td>
<td>۷۳</td>
<td>۱۴۵</td>
<td>۷۴±۳</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti</td>
<td></td>
<td>۱۰۳</td>
<td>۱۱۷</td>
<td>۹۴±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-5Al۲O۳</td>
<td></td>
<td>۱۰۳</td>
<td>۱۱۱</td>
<td>۱۰۰±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-10Al۲O۳</td>
<td></td>
<td>۱۰۴۲</td>
<td>۱۰۰</td>
<td>۱۰۰±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-15Al۲O۳</td>
<td></td>
<td>۱۰۳۳</td>
<td>۱۰۱</td>
<td>۱۰۱±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-15SiC</td>
<td></td>
<td>۱۰۳۸</td>
<td>۱۰۲</td>
<td>۱۰۲±۱۰</td>
<td></td>
</tr>
</tbody>
</table>

سپس در ایجاد شده در طرف انتهای محور بعد است.

شکل ۶. تصویر SEM سطح شکست نمونه‌های کم‌سی (الف) آلومینیوم خالص (ب) حفره‌های ناشی از کنده شدن AlTi-15SiC در آزمایش کشش با فلش‌ها توان داده شده است.

در اکسترویت‌های شش به ۷۴٪ رسیده است که بسیار کمتر از درصد افزایش طول آلومینیوم خالص می‌باشد. در این آلیاژها، افزایش کسر حجمی فاز ترد به صورت ترکیبات بین فلزی پراکنده شده در زمینه و حضور

شکل ۵. تصویر SEM کامپوزیت AlTi-10Al۲O۳ بعد از اکسترویت

جدول ۱. خواص فیزیکی و مکانیکی کامپوزیت‌های زمینه آلومینیومی

<table>
<thead>
<tr>
<th>آلومینیومی</th>
<th>ماده</th>
<th>تخلخل (plied)</th>
<th>%E</th>
<th>H</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Ti</td>
<td>۰</td>
<td>۱۹۱</td>
<td>۵۸±۲</td>
<td></td>
</tr>
<tr>
<td>Al-5Al۲O۳</td>
<td></td>
<td>۰.۵۲</td>
<td>۱۰۱۵</td>
<td>۸۶±۵</td>
<td></td>
</tr>
<tr>
<td>Al-10Al۲O۳</td>
<td></td>
<td>۰.۶۲</td>
<td>۹۴±۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-15Al۲O۳</td>
<td></td>
<td>۰.۷۲</td>
<td>۷۹±۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-20Al۲O۳</td>
<td></td>
<td>۰.۸۲</td>
<td>۶۸±۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-5SiC</td>
<td></td>
<td>۵۵</td>
<td>۱۷۷</td>
<td>۷۱±۲</td>
<td></td>
</tr>
<tr>
<td>Al-15SiC</td>
<td></td>
<td>۷۳</td>
<td>۱۴۵</td>
<td>۷۴±۳</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti</td>
<td></td>
<td>۱۰۳</td>
<td>۱۱۷</td>
<td>۹۴±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-5Al۲O۳</td>
<td></td>
<td>۱۰۳</td>
<td>۱۱۱</td>
<td>۱۰۰±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-10Al۲O۳</td>
<td></td>
<td>۱۰۴۲</td>
<td>۱۰۰</td>
<td>۱۰۰±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-15Al۲O۳</td>
<td></td>
<td>۱۰۳۳</td>
<td>۱۰۱</td>
<td>۱۰۱±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-15SiC</td>
<td></td>
<td>۱۰۳۸</td>
<td>۱۰۲</td>
<td>۱۰۲±۱۰</td>
<td></td>
</tr>
</tbody>
</table>

سپس در ایجاد شده در طرف انتهای محور بعد است.

شکل ۶. تصویر SEM سطح شکست نمونه‌های کم‌سی (الف) آلومینیوم خالص (ب) حفره‌های ناشی از کنده شدن AlTi-15SiC در آزمایش کشش با فلش‌ها توان داده شده است.

در اکسترویت‌های شش به ۷۴٪ رسیده است که بسیار کمتر از درصد افزایش طول آلومینیوم خالص می‌باشد. در این آلیاژها، افزایش کسر حجمی فاز ترد به صورت ترکیبات بین فلزی پراکنده شده در زمینه و حضور

شکل ۵. تصویر SEM کامپوزیت AlTi-10Al۲O۳ بعد از اکسترویت

جدول ۱. خواص فیزیکی و مکانیکی کامپوزیت‌های زمینه آلومینیومی

<table>
<thead>
<tr>
<th>آلومینیومی</th>
<th>ماده</th>
<th>تخلخل (plied)</th>
<th>%E</th>
<th>H</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Ti</td>
<td>۰</td>
<td>۱۹۱</td>
<td>۵۸±۲</td>
<td></td>
</tr>
<tr>
<td>Al-5Al۲O۳</td>
<td></td>
<td>۰.۵۲</td>
<td>۱۰۱۵</td>
<td>۸۶±۵</td>
<td></td>
</tr>
<tr>
<td>Al-10Al۲O۳</td>
<td></td>
<td>۰.۶۲</td>
<td>۹۴±۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-15Al۲O۳</td>
<td></td>
<td>۰.۷۲</td>
<td>۷۹±۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-20Al۲O۳</td>
<td></td>
<td>۰.۸۲</td>
<td>۶۸±۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-5SiC</td>
<td></td>
<td>۵۵</td>
<td>۱۷۷</td>
<td>۷۱±۲</td>
<td></td>
</tr>
<tr>
<td>Al-15SiC</td>
<td></td>
<td>۷۳</td>
<td>۱۴۵</td>
<td>۷۴±۳</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti</td>
<td></td>
<td>۱۰۳</td>
<td>۱۱۷</td>
<td>۹۴±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-5Al۲O۳</td>
<td></td>
<td>۱۰۳</td>
<td>۱۱۱</td>
<td>۱۰۰±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-10Al۲O۳</td>
<td></td>
<td>۱۰۴۲</td>
<td>۱۰۰</td>
<td>۱۰۰±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-15Al۲O۳</td>
<td></td>
<td>۱۰۳۳</td>
<td>۱۰۱</td>
<td>۱۰۱±۱۰</td>
<td></td>
</tr>
<tr>
<td>Al-10Ti-15SiC</td>
<td></td>
<td>۱۰۳۸</td>
<td>۱۰۲</td>
<td>۱۰۲±۱۰</td>
<td></td>
</tr>
</tbody>
</table>

سپس در ایجاد شده در طرف انتهای محور بعد است.

شکل ۶. تصویر SEM سطح شکست نمونه‌های کم‌سی (الف) آلومینیوم خالص (ب) حفره‌های ناشی از کنده شدن AlTi-15SiC در آزمایش کشش با فلش‌ها توان داده شده است.
پربرري ريز ساختار و مقاومت فرسايشي كامپوزيت هاي زمينه Al-Ti

d) +10 Ti

الفيتوت شده یا بزرگ‌نمایي های مختلف و (ج) نانو فولادی SEM تصور Sطح فرسایش یافته

در برخی نقاط نیز در حوصلات S، S بین زمینه S و ترکب‌های S از زمینه S برون کشیده شده و حفره‌هایی

در سطح شکست بالا گذشته‌انداز دنباله حوصلات S و ترکب‌های S از زمینه S برون کشیده شده و حفره‌هایی

در سطح شکست بالا گذشته‌انداز دنباله حوصلات S و ترکب‌های S از زمینه S برون کشیده شده و حفره‌هایی

فراسایشی است. آنالیز EDS سطح بین فولادی لغزش

یافته بر روی نمونه آلومینیوم خالص ناشد که مقدار Zیادی

الومینیوم از نمونه به بین انتقال یافته است، شکل (8).

لازم به ذکر است که اضافه نمودن خاکرده سخت به آلومینیوم سیلان

پلاستیک زرودن و انتقال فلز به بین را در آزمایش فرسایش تقلیل

و مقاومت سایشی ماده مورد بهبود می‌یابد. تصور براده‌های حامل

از فرسایش در شکل (9) به نوشت.

براده‌های Zرگ حامل از فرسایش نشان دهنده حضرت همزمان

مکانیزم‌های جسم‌گذاری و لایه‌برداری از سطح است [16]. اما وجود

براده‌های ورقه‌ای شکل حاکم از آن است که مکانیزم لایه‌برداری در

فرآیند سایش غالب بوده است. در حضور مکانیزم سایش جسم‌گذاری,

به دلیل جوش خوردن سطح بین فولادی و ماده مورد، پیوندهای

موضعی در حالت خامه به وجود می‌آید و سپس ماده با کنده شدن از

پی سطح به دلیل انقلال خواهد یافته. آنالیز EDS سطح بین فولادی

جدا شده از آلیاژ Al-10Ti حضوه‌های را در برابر این نشان می‌دهد که

حاقی از فرسایش یافتن بین فولادی است شکل (10).

یافته نمونه‌های کامپوزیتی را با برگ‌نمایی از مختلف نشان می‌دهند.

آنالیز برداشت‌ها در این سطح مشاهده است. حضور دوTip

نمونه‌های مختلف کامپوزیتی در مساحتی مخصوص

گردید. شکل (11). هم‌توده که مشاهده می‌شود در آزمایش فرسایشی

حجم فاز تقویت شده، مقاومت فرسایشی نمونه‌های کامپوزیتی

بهبود پیدا کرده است.
اعداد شده به ماده مركب را متخلخل می‌شود. همین امر موجب مقاومت بیشتر ماده در شرایط اعمال نیروهای سایر ماده‌گردد.
با توجه به شکل (1) می‌توان نتیجه گرفت کامپوزیت‌های آلی سیمی سیسیمی که سختی بالاتری نسبت به
Al-Ti از دست داده شده با ذرات SiC آلومینیوم نمایش داده شده. رفتار فرسایشی
الزاسی از خود نشان می‌دهد. همچنین در مواد مركب حاول
یننوننون نمایش داده می‌شود.
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در محدوده
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در محدوده
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در محدوده
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در محدوده
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در محدوده
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در محدوده
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در محدوده
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در محدوده
به‌ویژه با همان استفاده از فرآیند کامپوزیت‌سازی گرم پودر می‌توان به بهبود کیفیتی از محصولات تولید بیشتر قبلاً در

مراجع

[16] صادقی، مهدی، مشکار، محمدحسن، «عیوب ایجاد شده در مواد مرکب زمینه آلومینیوم تولیدی به روش اکسترژون یودر»، مجله علمی و پژوهشی شریف، شماره سی و نخ، صفحه 111-147 و 128-129.