بررسی تأثیر مقدار فلакс بر فرآیند تصفیه مذاب آلومینیم

امید مجیدی، سعید شیبسترو و محمد رضا ابوتالی

چکیده: در این پژوهش، فلакс حاصل از ترکیب NaCl-KCl به هر گرم E در دو نوع a379 و a319 به مذاب آلومینیم حاصل از ذوب ترکیب‌های الیزی‌های ریخته شده‌است. افزوده شده و تأثیر مقدار فلакс بر راندمان عملیات تصفیه از طریق آزمایش‌های کشش، آزمون انجام شده‌است. در پژوهش، مدل‌های معنی‌داری برای رفتار فلакс که با استفاده از حالت‌های فلکسیون به روش SEM، میکروسکوپ الکترونی قطعه‌بندی شده، پژوهش و بررسی گرفته شد. پس از انجام آزمایش‌ها، به توجه به نتایج، مقدار بهینه آلومینیم تغییر گرفت.

واژه‌کلیدی: مذاب آلومینیم، فلакс، آخال، تصفیه و بازیابی.

مقدمه

صرف آلیاژهای مختلف آلومینیم به دلیل خواص ویژه آنها در بیشتر سال‌ها به طور فعال توجهی افراد جانب و مهمین امر موجب افزایش تقاضا به دلیل افزایش اهمیت آنها بعنوان منابع تانه‌گذشته است. برابری ترکیب‌های آلومینیمی حاصل از فلزات سنگین و سبزی بر دیگر دارای کاملاً متفاوت خواص به وقوع بر جمعیت‌ها و بین‌شانسی اند. گزارش شده است که فلکسیون فلکسیون و فلکسیونی‌های و فلکسیونی‌های مختلف آلومینیم به دلیل قابلیت عبور از خاچی از آنها را می‌تواند در ابعاد بالای دارای تأثیر قابل توجهی داشته باشد.

نتیجه‌گیری و چاپ: از این پژوهش، می‌توان به دست آورده شد که مقدار فلакс بر فرآیند تصفیه مذاب آلومینیم تأثیر مثبتی دارد. با افزایش مقدار فلакс، عملیات تصفیه بهبود می‌یابد و کیفیت مذاب آلومینیم بهبود می‌یابد.

پایان نهایی: پژوهش‌های پیشین نشان داده‌اند که مقدار فلакс به تأثیر قابل توجهی بر عملکرد مذاب آلومینیم دارد. این پژوهش نیز نشان داد که آنگونه‌ای که فلакс به مذاب آلومینیم اضافه می‌گردد، عملکرد تصفیه بهبود می‌یابد. بنابراین، بهتر است در پیروی از نتایج این پژوهش، مقدار فلакс به توجه به بهترین عملکرد مذاب آلومینیم انتخاب و تغییر گردد.
جدول 1. ترکیب شیمیایی فلایکس مورد استفاده در تصفیه ماده آلومینیم

<table>
<thead>
<tr>
<th>اجزای فلایکس</th>
<th>درصد وزنی (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>25</td>
</tr>
<tr>
<td>KCl</td>
<td>8</td>
</tr>
<tr>
<td>Na2SiF6</td>
<td>2</td>
</tr>
</tbody>
</table>

جدول 2. گذاری تهیه‌های تصفیه شده با درصد‌های مختلف فلایکس

<table>
<thead>
<tr>
<th>شماره تهیه‌نامه</th>
<th>ماده آلومینیم</th>
<th>درصد وزنی (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>NaCl</td>
<td>25</td>
</tr>
<tr>
<td>S1</td>
<td>KCl</td>
<td>8</td>
</tr>
<tr>
<td>S2</td>
<td>Na2SiF6</td>
<td>2</td>
</tr>
<tr>
<td>W0</td>
<td>ذوب شیمیایی آلیاژ</td>
<td>0.25</td>
</tr>
<tr>
<td>W1</td>
<td>ذوب شیمیایی آلیاژ</td>
<td>0.40</td>
</tr>
<tr>
<td>W2</td>
<td>ذوب شیمیایی آلیاژ</td>
<td>0.60</td>
</tr>
</tbody>
</table>

روش تحقیق

در این پژوهش تأثیر مقدار فلایکس بر چگالی و خواص مکانیکی آلیاژ در فرانسی مداد آلومینیم مورد بررسی قرار گرفت. از برای این مطالعه تیپ سیستمیکی فعال رژیمی از مدل‌های استاندارد ASTM-B108 و ASTM-B557 استفاده گردید. استانداردهای ISO و EN توصیه‌های تهیه‌نامه‌های خاصی از آزمایش‌های ماده آلومینیم مانند 11600 و 11601 را در پروژه بهترین سیستم‌ها می‌پذیرد. مقدار میزان فلایکس در هر یک از آزمایش‌های مطالعه با مقدار 10% از وزن ماده آلومینیم تعیین گردید. در تیپ‌های مختلف فلایکسی از شیب حساسیت و حساسیت انرژی استفاده گردید.

سیستم توسط فلایکسی با مرکز گازی و شیمیایی دو درصد وزنی آلومینیم فلایکس به مهار دیاکسید آرگون در دمای 1500 گرادوس مالی و در جریان الکتریکی فلایکس به همراه از تیپ‌های مختلف فلایکسی تهیه شد. در آزمایش‌ها با مقدار مختلف فلایکس انجام گرفت. در طرح‌های مختلفی از کنترل و تغییرات مقدار فلایکسی به کار برده و همچنین تغییرات در درصد وزنی فلاکسی و درصد وزنی ماده آلومینیم تأثیر داشت. در این پژوهش بسته به ترتیب 11600، 11601 و 13700 درصد وزنی کل ماده آلومینیم و 10% درصد وزنی ماده آلومینیم مورد بررسی قرار گرفت.

شکل 1. ناحیه فرایند افزودن فلایکس

همچنین برای بررسی بیشتر میزان تأثیر عمليات تصفیه فلایکس در مورد تیپ فلیکسی از آلیاژ‌های کاربردی که برای آزمایش با اعمال مقدار به دست آمده فلایکس انجام گرفت و تغییرات با دو تیپ فلیکسی از مدل‌های XRD و XRF محاسبه و در جدول 1 آمده است. مقدار تأثیر فلایکسی و درجه 2 از آزمایش XRD و XRF محاسبه شده است.
بررسی تأثیر مقدار فلاکس بر فرآیند تصفیه مذاب آلومینیم

شکل 2. تأثیر میزان فلاکس تصفیه کننده بر استحکام کششی نمونه‌های ریختگی

شکل 3. تأثیر میزان فلاکس تصفیه کننده بر ظرفیت کششی نمونه‌های ریختگی

جدول 3. آنالیز شیمیایی نمونه‌های ریختگی

بررسی‌های آپار ریختگی

نتایج و بحث

1 تأثیر شیمیایی نمونه‌های ریختگی در شرایط مختلف تخصصی در جدول 3 اند. این گزارش که در مقایسه با نمونه‌های استحکام کشی و مایع‌گیری در مهندسین طول نسبی نمونه‌های تخصصی شده با مقدار مختلغ فلاکس می‌باشد. تکرار مقدار در محیط (A319)، محصولات منطقی ترکیب آلیاژهای استاندارد (A380) و A356 می‌باشد که از این امر در مورد ارائه اندام کامپوزیت است. گرچه نام

نمونه‌ها از نظر ترکیب شیمیایی در محصولات ترکیبی به کیفیت قرار

دارند. سه‌گانه که در شکل‌های 2 و 3 و ملاحظه می‌شود، نمونه S0

بیشتر استحکام کشی و درصد ارتباط طول نسبی را نسبت به

سایر نمونه‌ها دارا می‌باشد. با افزایش میزان فلاکس تا 3 درصد و

نیز، این نمونه‌ها روند قدرتی در افزایش استحکام کشی در سطح

تعداد کاهش استحکام و انعطاف‌پذیری نمونه‌ها مشاهده می‌شود (این

ذرات معمولاً مکان‌های اولیه ایجاد ترکیب‌های شکست هستند).

جدول 2. آنالیز شیمیایی نمونه‌های ریختگی

<table>
<thead>
<tr>
<th>نمونه</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Si</td>
<td>0.32</td>
<td>0.34</td>
<td>0.30</td>
<td>0.60</td>
<td>0.36</td>
</tr>
<tr>
<td>%Fe</td>
<td>0.85</td>
<td>0.96</td>
<td>0.72</td>
<td>0.15</td>
<td>0.79</td>
</tr>
<tr>
<td>%Cu</td>
<td>0.24</td>
<td>0.34</td>
<td>0.36</td>
<td>0.37</td>
<td>0.39</td>
</tr>
<tr>
<td>%Mn</td>
<td>0.09</td>
<td>0.06</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>%Mg</td>
<td>0.06</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>%Zn</td>
<td>0.06</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Ti</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>Al</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
</tr>
</tbody>
</table>
خلاصه آزمایش‌های محققین

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.384</td>
<td>0.349</td>
<td>0.375</td>
</tr>
<tr>
<td>2</td>
<td>0.891</td>
<td>0.834</td>
<td>0.844</td>
</tr>
<tr>
<td>3</td>
<td>0.752</td>
<td>0.763</td>
<td>0.763</td>
</tr>
<tr>
<td>4</td>
<td>0.741</td>
<td>0.755</td>
<td>0.755</td>
</tr>
<tr>
<td>5</td>
<td>0.721</td>
<td>0.724</td>
<td>0.724</td>
</tr>
<tr>
<td>6</td>
<td>0.704</td>
<td>0.704</td>
<td>0.704</td>
</tr>
</tbody>
</table>

نتایج

با استفاده از روش معیاری ریاضی برای تعیین مقدار فلکس بر فرض این تغییرات جگال برای این افزایش، به دنبال آزمایش‌ها در شرح مقدماتی، نتایج شما می‌شود.

موارد

1. حضور ترکیبات فلورایید درون ترکیب فلکس (CuF₂) و Na₂SiF₆
2. حضور فلورایید درون ترکیب فلکس (CuF₂) و Na₂SiF₆
نتیجه گیری
الف) با افزایش میزان فلакс افزوده (فلکس فلوت‌پای)، (CaF2) درصد ویژه مذاب، راداندی پهنه‌ای بطور پویا و Na2SiF6 تا حدود 18/2 درصد و (CaF2) روند افزایشی می‌دارد.
ب) استحکام کشی درصد افزایش طول نسبی آلیاژی که با افزودن فلکس به میزان 13 درصد و ویژه مذاب تصفیه شده است، افزایش چشمگیری به ترتیب 4/93% نسبت به نمونه‌های که تحت عملیات تصفیه قرار نگرفته اند است. نشان می‌دهد (ج) با افزودن فلکس به میزان بیش از 13 درصد و ویژه مذاب، به دلیل اضطراب شدن مذاب از حضور فلکس، روند افزایشی راداندی تصفیه می‌شود.

مراجع

با توجه به این نمودارها ملاحظه می‌شود که استحکام فلکس در این آلیاژ کاربردی نیز باعث بهبود خواص مکانیکی می‌شود، طبقه‌بندی با اعمال فلکس به مقدار 13 درصد ویژه مذاب (نمونه W1) استحکام کشی و میزان درصد افزایش طول نسبی به ترتیب 18/2 و 4/93 درصد نسبت به نمونه حاصل از ذوب بی‌فلکس‌کرده و بدون افزودن فلکس (نمونه W0) افزایش یافته است. از طرفی نمونه W1 کمترین اندازه چگالی را دارد و نیز این آلیاژ در سطح نمونه دیگر بوده است. مکانیزم تصفیه در این مورد نیز همانگونه که در مورد نمونه‌های آلیاژ ریختگی ذکر گردید احتمالاً شناورسازی و واکنش شیمیایی بین فلکس و آلیاژ می‌باشد.

شکل 8 نمودار استحکام کشی نمونه‌های مختلف آلیاژ ۶0۶۳

شکل 9 نمودار درصد افزایش طول نسبی نمونه‌های مختلف آلیاژ ۶0۶۳

شکل 10 تأثیر عملیات تصفیه بر اندازه چگالی نمونه‌های آلیاژ ۶0۶۳

