شیب سازی سامانه روان کاری موتورهای درونسوز
به روش خطي شده تصحیح هد
امید رزبایی، سید علی چاپاری و رضا ابراهیمی

چکیده: سامانه روان کاری موتورهای احتراق خاکی با توجه به چندین از امکانات این سیستم که کارکرد منطقی و دوام
موتورها را تسهیل می‌کند. این سیستم در طراحی و تحقیق مدار سیستم روان کاری موتورهای احتراق خاکی است. در این
مواد روش‌های آزمایشگاهی و نوید و خلاصه مقتدره‌ای در صورت استفاده از آن در آن‌ها این‌ها مثبت است. سیستم کد کامپیوتری
همه‌شناخته شده است که به‌طور کلی در صحنه تحقیق و ساختار سامانه روان کاری موتورهای احتراق EngineLubSim
داخل پرداخت. این کد از روش خطي شده تصحیح هد برای تشریح مهم‌ترین معادلات سیستم روان کاری سود
ساز از نظر می‌باشد که همچنین کد کامپیوتری بهتری برای محاسبات دینامیکی مربوط به‌خروجی از مرکز
یافته‌های محاسباتی در تحقیق سامانه روان کاری موتور به‌طور مکانیکی می‌باشد. تحقیق و بررسی قرار گرفته است.
نتایج نشان می‌دهد که مقدار نهایی رونگ به‌شماره‌ها مناسب‌تری نسبت به آن‌ها باید تغییراتی در طراحی
صورت گیرد تا مشکل شود.

واژه‌های کلیدی: موتورهای درونسوز، روان کاری، یافته‌ها، بالایی رونگ

1. مقدمه

مدار روان کاری یکی از حیاتی‌ترین سیستم‌های موتورهای درونسوز است. طراحی درست و بهینه این سیستم هر حفاظت از قطعات
موتور در مقابل سیالی و خوردگی در کاهش مصرف سوخت و افزایش
زاندنهموه تورهای بسیار مفید است. شیب هماهنگی روان کاری یکی از در مراحل طراحی سیستم روان کاری است که
با روش‌های تجربی و آزمایشگاهی سپار مقتدره برای صرفه‌جویی
استفاده از نرم‌افزارهای حيثی سازی و مرکزی‌سازی سامانه
روان کاری علاوه بر تحقیق می‌توان به بررسی و بهینه کردن سیستم‌های
 موجود بر وابسته.

 necesario que done. El 20/12/2020
امید رزایی، سید علی جعفری و رضا ابراهیمی

24

روش کامپیوتری برای شیمی‌سازی سامانه روانکاری موتور توشنتیوند

که متأسفانه جهت پیگیری اخیر به آن کارهای مناسب می‌باشد.

در سال 1997 به طراحی و تحلیل Ricardo از شرکت M. A. Mian، سامانه روانکاری که موتور برق و تریز مستقیم برپایه

وسیله ریزه را به صورت حالت پایدار، بدون در نظر گرفتن انتقال حرارت و یک بدیع فضای کردن. رغای کردن به یک سیال

بنیانداشت این تابی در نظر گرفت. همچنین کارهای ریزه را در

روش کارکرد سامانه روانکاری معرفی کرد.

در کشور ما کنون سامانه روانکاری موتور به دقت مورد توجه قرار

نتوقف و در این زمینه اطلاعات و نتایج قطعی و مطلوب سامانه روانکاری موتور انجام داد.

طراحی سامانه روانکاری موتور استخراج هدایت هر یک از سیستم

در سامانه روانکاری موتور روانکاری معمولی راهش از اتصال این

روش یکی می‌باشد گزاره. در این مقاله خود ایجادی سیستم شیلی

که در گذشته مورد استفاده قرار گرفته‌اند. سرعت بیشتر

و ساده‌تر بودن برای نویسی این است.

افش فشار در اجراي مختلف معمول سامانه روانکاری

به منظور حل شیبک روانکاری لازم است که ایجاد افت فشار در لوله‌ها

و اجراي متعادلی به صورت تابی برای جهت جز و معیار

نور و دیع عبوری از آن، استحکام گردد. در ادامه، یک لود مورد بررسی

خواهد شد.

2-1- افت فشار در اثر اصطکاک

می‌توانیم روش در محاسبه لطفه بک مکان هیدرولیکی معاونت دارد.

و استخراج (1) این تست که برای تعیین افت فشار در هر یک استفاده می‌شود.

به عبارت (1) می‌توانیم افت فشار را در هر یک استفاده می‌شود.

\[
\frac{\Delta P}{\gamma} = \frac{L v}{D g} \]

(1)

معنی‌‌کننده هیدرولیکی به جز مانند مشمل متعلقانی است از

قبل دهانه‌ها، زاویه‌ها، نسبت به‌دین‌های کاهش‌دهنده و افزایش‌دهنده و برخی

اجراي دیگر. این که می‌توانیم روند جریان را در هم می‌زنیم و نتایج

بیشتر در جریان جریان بیشتر این یک که به درخواست طرح افت‌های

جدیدی می‌شود. سالم حاکی به دینامیک سیالات و مقیاس شوای

تجری نتایج لازم بر اینکه این نتایج بیشتر مناسب با مجدد

سرعت است. این به دلیل مرسوم است که اکثر افت‌های جزئی را به

صومع زیر نشنیده‌می‌شود.

\[
h = \frac{k v^2}{2g} \]

(2)
شبه سازی سامانه روآ ور کن کاری موتورهای درون کاری رو به روش خصیصی صاحب ذکر هدی

- یافتن سی در شیار محیطی

برای یافتن سی در شیار محیطی بر حسب افت فشار در مرکز یافتن سی، فرمول (7) توسط یافتن است [7]. شکل (1)

\[
Q = \frac{c}{\mu} \left[1 + \frac{c}{\mu} \right] \frac{D}{L} \left(f(\theta) - f_{0}(\theta) \right) d\theta
\]

در رابطه بالا:

\[
f_{0}(\theta) = \left(1 + \epsilon \cos \theta \right)^{3} + \left(\frac{3 \epsilon}{2} + \frac{1}{3} \sin 2\theta \right)^{3} \sin \theta - \frac{3 \sin^{3} \theta}{3}
\]

\[
f(\theta) = \theta + 3\epsilon \left(\frac{\theta}{2} + \frac{1}{3} \sin 2\theta \right)^{3} \sin \theta - \frac{3 \sin^{3} \theta}{3}
\]

3. سیستم معادلات و روش حل

اکثراً معادلات و روش هایی که ایراد راجعی را ده کاری مشخص شد. می‌توان برای یک سیستم معادلاتی استخراج نمود. چگونگی به دست آوردن این استخراج و روش‌های که برای حل آن وجود دارد در این بخش بررسی خواهد شد.

برای حل شیکه‌هایی که دارای ابعاد مختلف و مخازن متعدد باشد، سیستم است که در هر گاه به عنوان مجیله اصلی معادلات در نظر گرفته شود. پس از تعیین دقیق هد در هر گاه، بی‌کناری لوله با استفاده از اختلاف هد گره‌های دو انتهای مشخص می‌شود. این بخش ابتدا حذف انتهای برای هد گره‌های مختلط زده می‌شود و پسین با استفاده از معادلات حاکم و که در روش ییک‌پایان‌وال گره می‌تواند دچار ییک‌پایانی گردد. در حالی که با یک بار این روش لازم است

\[
W = \frac{\mu \lambda R L}{4c} \left(\frac{c}{c^2} \right) \left[16c^2 + \pi^2 (c^2 - \epsilon^2) \right]^{1/2}
\]

در این رابطه \(W \) یا \(R \) به انتهایی در خور کاری است که با توجه به داده‌های آزمایشگاهی فشار در سیستم‌های روابط و درای دینامیکی در هر انتهایه لوله مشخص، تعیین می‌گردد. برای اطلاع بیشتر از جهت وارد به با نانو و نون محاسبه، به مرجع [121] مراجعه کنید.

[7] شکل 1. یافتن سی در شیار محیطی
امید رزبانی، سید علی جابری و رضا ابراهیمی

با جاجئنگاری H به $H_i = H_j$ با h_j معرف هید در هر گره می‌باشد، خواهیم داشت:

$$\sum_j (C_iH_i - C_iH_j) = q_j \quad j = 1, 2, \ldots, J$$ (17)

در نهایت هر گره h_j به صورت زیر محاسبه می‌شود:

$$h_j = \frac{\sum_j C_iH_i}{\sum_j C_i} - q_j$$ (18)

اکنون می‌توان معادله خطی فوق را برای H به مجهول حل نمود.

برای این منظور، روش‌های مختلفی محفوظ گوش و تکرار به EngineLubSim بکار گرفته می‌شود. در نرم‌افزار مسئله به‌طور درست استفاده شده است. محدوده کاهش حاصل مورد نیاز از روش‌های لیک نیست. در این حالت H_j از روش نیوتن - رافسون برای حل این معادلات غیرخطی استفاده نمود.

در سال 1972 روش بای خصیصه‌ای این معادلات توسط وود و چارلز ارایه گردیدند [14]. خصیصه‌ای این معادلات موجب سادگی شدن حل مناسب می‌شود. با این وجود، در موارد ممکن است روش که به ظرف بان بی‌پایان استفاده نمود. در این روش برای حاصل شدن محاسبات از مولد به استفاده می‌شود. در موارد نیز می‌توان از روش می‌شود.

$$h_j = kQ^2$$ (19)

از رابطه فوق مشخص است که جریان عبوری بین هر دو گره و در نتیجه این معادلات برای محاسبه کرده.

$$Q_i | Q_j = h_j/k_{ij}$$ (20)

در رابطه (14)، Q_i و Q_j مجموع ضرایب افت و در انتهای i و j هر گره می‌باشد. برای تخصیص جهت جریان به h_j با عمل Q_j/k_j بدین شکل بازی می‌شود. برای چنین موردی استفاده Q_j/k_j می‌شود. در موارد های جریان از گره i به گره j می‌باشد اگر تغییر از جریان باشد (این کمیت از تکرار قبلی و با تغییر اولیه تعیین می‌شود) و از تغییر زیر تعریف می‌شود.

$$Q_j = C_i h_j$$ (21)

در صورتی که خروجی خالص جری نیست از Q_j باشد، بقایی جری در این گره به شکل زیر می‌شود:

$$\sum Q_j = \sum_i C_i h_j = q_j \quad j = 1, 2, \ldots, J$$ (22)
5. تحلیل مدار روان کاری یک موتور نمونه

مداد روان کاری یک موتور 4 سیلندر بنزینی برای شبیه‌سازی و تحلیل انتخاب شد. برای هندسه‌ی مدار از مداد مونتاژ پیکان انتخاب شده است اما برای تابیه‌های بالایی و یک روتور از مقادیر موجود در مقاله‌ی بی‌متری شمانش استفاده شد. تمام گره‌ها و لوله‌ها شماری گذاری شدند و در نهایت قابل روندی بهبود گرفتی. با وجود این که مدار با تمام جزئیات عمل داده است اما برای درک بهتر مسئله از تابیه‌های داده جزئیات مارد روان کاری صرفاً دیده شد.

شکل ۵ ساده‌شده مدار روان کاری موتور نمونه را نشان می‌دهد. نحوه گردد روتون در مدار این صورت است که ابتدا یک تابیه روتون توسط یک مکیده گره شده و پس از عبور از پایایی روتون (ولول شماره ۲) جز برای سیل‌نری اصلی روتون مورد گذاری شد. سپس روتون از مطرح‌گر اصلی به پاتانفان‌ها تغذیه می‌شود. یک شاخه تابیز روان کاری سیلدزن از انتهای مطرح‌گر شده است (گره شماره ۳) که بی‌متری شمانشی می‌شود. مدل سوپاک و اسکایک‌ها را روان کاری مکند.

تابیه‌های بالایی از قرار گرفت‌های نمونه انتخاب شد و ابرهای یک روتون به ثبت رنگ از ۵۰۰۰ درصد مورد گرفت‌های شده است. شبیه‌سازی در سرعت

| جدول ۱. مقایسه دیبه‌ها
<table>
<thead>
<tr>
<th></th>
<th>شبیه‌سازی</th>
<th>شبیه‌سازی</th>
<th>شبیه‌سازی</th>
<th>شبیه‌سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D کلاس ۲</td>
<td>D کلاس ۳</td>
<td>D کلاس ۴</td>
<td>D کلاس ۵</td>
</tr>
<tr>
<td>QJ۱</td>
<td>۰.۳۵ ft/s</td>
<td>۰.۵ ft/s</td>
<td>۰.۶ ft/s</td>
<td>۰.۷ ft/s</td>
</tr>
<tr>
<td>QJ۲</td>
<td>۰.۶۵ ft/s</td>
<td>۰.۸ ft/s</td>
<td>۰.۹ ft/s</td>
<td>۱.۰ ft/s</td>
</tr>
</tbody>
</table>

شکل ۴ مدار ساده هیدرولیکی [۱۶]
شیب سازی سامانه روان کاری موتورهای درون سوز به روش خطی شده تصحیح یک

![Diagram]

شکل ۵ نمای ساده شده مدار روان کاری موتور نمونه

جدول ۲. هد در گره‌های مدار روان کاری موتور نمونه

<table>
<thead>
<tr>
<th>لویه</th>
<th>گره</th>
<th>هد (آستین)</th>
<th>گره</th>
<th>هد (آستین)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1.E+02</td>
<td>2</td>
<td>57/50</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>1.E+02</td>
<td>3</td>
<td>57/50</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>1.E+02</td>
<td>4</td>
<td>57/50</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>1.E+02</td>
<td>5</td>
<td>57/50</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>1.E+02</td>
<td>6</td>
<td>57/50</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>1.E+02</td>
<td>7</td>
<td>57/50</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>1.E+02</td>
<td>8</td>
<td>57/50</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>1.E+02</td>
<td>9</td>
<td>57/50</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>1.E+02</td>
<td>10</td>
<td>57/50</td>
</tr>
</tbody>
</table>

جدول ۳. دبی در مقاطع مختلف مدار روان کاری موتور نمونه

<table>
<thead>
<tr>
<th>لویه</th>
<th>دبی اینتر در درجهای</th>
<th>لویه</th>
<th>دبی اینتر در درجهای</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12/16</td>
<td>1</td>
<td>12/16</td>
</tr>
<tr>
<td>2</td>
<td>12/16</td>
<td>2</td>
<td>12/16</td>
</tr>
<tr>
<td>3</td>
<td>12/16</td>
<td>3</td>
<td>12/16</td>
</tr>
<tr>
<td>4</td>
<td>12/16</td>
<td>4</td>
<td>12/16</td>
</tr>
<tr>
<td>5</td>
<td>12/16</td>
<td>5</td>
<td>12/16</td>
</tr>
<tr>
<td>6</td>
<td>12/16</td>
<td>6</td>
<td>12/16</td>
</tr>
<tr>
<td>7</td>
<td>12/16</td>
<td>7</td>
<td>12/16</td>
</tr>
<tr>
<td>8</td>
<td>12/16</td>
<td>8</td>
<td>12/16</td>
</tr>
</tbody>
</table>

۶. نتیجه‌گیری

در این مقاله برای تخمین بار از روش خطی شده تصحیح یک برای تحلیل مدار روان کاری موتور استفاده شده است که برتری این روش بر سایر روشهای همانگونه که بحث شد، سریع تر بوده و ساده‌تر بودن برنامه نویسی آن است. با استفاده از روش فوق کد کامپیوتری به زبان فرترن نوشته شده. که قادر به تحلیل شبکه روان کاری موتورهای درون سوز است.

تردید قرار دادن در حالی که به باقی بقایانها روغن اضافه کنید می‌شود. در مورد این موتور پیشنهاد می‌گردد بازگری در طراحی راهگاه‌ها و انتخاب پمپ مناسب مشکل برطرف گردد.
مراجع

[14] زیرانی، ا.، نویسنده، مشاوره و تحلیل سیستم محصولات موتورهای احترافی داخلی، توان آنالیز کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، 1383.