شیبه سازی سامانه روان کاری موتورهای درون‌سوز به روش خطي شده تصحیح هد

امید ربانی. سید علی جاییرو و رضا ابراهیمی

چکیده: سامانه روان کاری موتورهای احتراق داخلی یکی از مهم‌ترین اجزای است که کارکرد مطمئن و دوام موتورها را تضمین می‌کند. استفاده از شیبه‌سازی راننده در طراحی و تحقیق مدار روان کاری نسبت به روش‌های آزمایشگاهی و سیم و خطا مقررات به صرفه‌تر است. در این راستا بنا به نتایج اجرای سامانه روان کاری موتورهای احتراق EngineLubSim داخل پرداخت، این کد از روش خطي شده تصحیح هد برای بررسی سیستم معادلات سامانه روان کاری را سود می‌برد و با استفاده از روش به خروجی یک محاسبات دینامیکی مربوط به خروجی از مرکز یافتن‌ها توسط علفه (BearLoad) آن برای کد‌های مورد نظر موتور EngineLubSim ابزار فرم‌سازی در تحقیق مدار روان کاری موتور تکنیک‌ها به هنگام کودکانگی موددی به هنگام یافتن‌ها مناسب نیست و با یک تغییراتی در طراحی صورت گیرد تا مشکل را برطرف شود.

واژه‌کلیدی: موتورهای درون‌سوز، روان کاری، باتلاقان، بالابه روبن

1. مقدمه

مدار روان کاری یکی از حیاتی‌ترین سامانه‌های موتورهای درون‌سوز است. طراحی درست و بهینه این سامانه‌ها باید حفظ و بهبود از فضاهای مدار در مقابل سختی و خوردگی در کاهش مصرف سوخت و بهبود افزایش را افزایش دهد. راهکار و روش‌های موتورهای پیشرفته تأثیر عمده آن است. به روش‌های تجربی و آزمایشگاهی سیستة مقررات به صرفه‌تر است. ابزار استفاده از ترم‌افزارهای شبیه‌سازی، صعب‌اندیش است و در صورت اقصیدانی نشان‌دهنده شده است. با بررسی روان کاری مدار در طراحی مدار بسته به بررسی و بهینه کردن سامانه‌های موجود برخی نیز پرداخت.

2. تحقیقات در مورد سامانه روان کاری و کوشش در راستای

E. A. Neu و همکاران در سال ۱۹۷۲، سامانه روان کاری موتور دیزل در مدار روان کاری موتور دیزل به تحقیق منجر به صورت‌داری در صورت کنترل درجه حرارت مقدار حرارتی. Paul W. Olsen و Charles E. Kluck در سال ۱۹۸۴، به تحقیق پیشرفت در اجرای کنترل حرارتی و بهبود سیستم‌های روان کاری یک مورد پیشرفت را تشریح کردند [۳]. این کمکی از بررسی امکانات را به هنگام سایز مدار کاری اختصاص دادند و مدل سازی سامانه روان کاری را به صورت چرای حالت یا با مدل‌های خطي اجرای انجام دادند. Takashi Yamamoto و Phuoc Tran در سال ۱۹۸۷ اثر دی. جریان و دیمی روغن را تحقیق امکان‌پذیر کردن موتور بررسی کردند [۴]. در سال ۱۹۹۱، A. Hass و همکارانی با نیروی حرارتی حرارتی مصرف جویی در مصرف انرژی و بهبود سیستم سامانه روان کاری پرداختند [۵].

3. نتایج وصول: ۲۰۲۰

امید ربانی. دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، razhani.omid@gmail.com

دکتر سید علی جاییرو، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، jazayeri@kntu.ac.ir

резیابه ابراهیمی، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، rebrahimi@kntu.ac.ir

ننشریه بهینه علمی مهندسی دانشگاه علم و صنعت ایران

ویژه‌نامه مهندسی مواد و متالورزی، جلد ۱۹، شماره ۵، سال ۱۳۸۷، صفحه ۳۲۰-۳۲۶
راستا کم‌کامپیوتری برای سیب‌سازی سامانه روان‌کاری موتور نوشته‌اند که مسئولیت تولید نماینده در سال 1997 می‌باشد که دارای تحقیق و تحلیل M. A. Mian سامانه روان‌کاری یک موتور دیزل در دور و تریز مستطیل‌برداری و سیستم روان‌کاری را به صورت حالت بی‌پایان بودن در نظر گرفت انتقال حرارت و یک عضله در این سیال تنومندی با ناشی‌تنهایی از نظر می‌باشد به مهندسان مدل‌های این را به روش‌هایی که در گذشته مورد استفاده قرار گرفت. به وسیله موثر بودن نویسی آن است. از وسیله موثر بودن نویسی آن است.

امتداد قسمت اول که در گذشته مورد استفاده قرار گرفت، مربوط به جزء مورد توجه قرار گرفت. در این بخش نمایش داده شده است. به روش‌هایی که در گذشته مورد استفاده قرار گرفت. به وسیله موثر بودن نویسی آن است.

اثربخشی سیب‌سازی سامانه روان‌کاری به منظور حل مشکل روان‌کاری از انتظار است که انتظار این افت شکار در لوله‌ها و این انتظار شکله به صورت تابعی از شکل‌های جزء مورد نظر و دیگر عوامل از آن است. استرس گردد. در ادامه. این دور بررسی خواهد شد.

۲-۱. افت شکار در اثر استککار

مکانین روش در محاسبه لطفت بر دیوار هیدرولیکی معادله داری- وابستگی (۱) است که برای تعیین افت در لوله‌ها استفاده می‌شود.

\[
 h = \frac{Q}{\gamma} = f \left(\frac{L}{V^2} \right) g
\]

در این بخش نمایش داده شده است. به روش‌هایی که در گذشته مورد استفاده قرار گرفت. به وسیله موثر بودن نویسی آن است.

- افت شکار با کیف سوخته بدون شکار

که مسئولیت تولید نماینده در سال 1997 می‌باشد که دارای تحقیق و تحلیل M. A. Mian سامانه روان‌کاری یک موتور دیزل در دور و تریز مستطیل‌برداری و سیستم روان‌کاری را به صورت حالت بی‌پایان بودن در نظر گرفت

\[
 p - p_i = \frac{Q^2}{\alpha \pi D^2} \left(\frac{L}{D} + \frac{4}{3}\right) \Delta P
\]

\[
 Q = \frac{3}{4} \frac{\pi R}{6} \left(1.2 + 11 \frac{d^2}{L} \right) \Delta P
\]

\[
 h = k \frac{v^2}{2g}
\]

راستا کم‌کامپیوتری برای سیب‌سازی سامانه روان‌کاری موتور نوشته‌اند که مسئولیت تولید نماینده در سال 1997 می‌باشد که دارای تحقیق و تحلیل M. A. Mian سامانه روان‌کاری یک موتور دیزل در دور و تریز مستطیل‌برداری و سیستم روان‌کاری را به صورت حالت بی‌پایان بودن در نظر گرفت انتقال حرارت و یک عضله در این سیال تنومندی با ناشی‌تنهایی از نظر می‌باشد به مهندسان مدل‌های این را به روش‌هایی که در گذشته مورد استفاده قرار گرفت. به وسیله موثر بودن نویسی آن است.
شیب سازی سامانه: روان کاری موتورهای درون سوز به روش فکری زیر شرح انجام می‌گردد.

- یافته‌های با شیار محیطی

برای یافته‌های با شیار محیطی، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 1: \text{یافته‌های با شیار محیطی [7]}$$

برای یافته‌های با شیار محیطی، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 2: \text{مشخصات هندسی یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 3: \text{مشخصات مکانیکی و زیربنایی یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 4: \text{مشخصات نرم‌افزاری و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 5: \text{مشخصات آماری و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 6: \text{مشخصات حسابی و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 7: \text{مشخصات نرم‌افزاری و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 8: \text{مشخصات آماری و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 9: \text{مشخصات حسابی و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 10: \text{مشخصات نرم‌افزاری و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 11: \text{مشخصات آماری و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.

$$\text{شکل } 12: \text{مشخصات حسابی و آزمون‌های یافته‌های با شیار محیطی [7]}$$

برای محاسبه مقدار متوسط خروجی از مرکز یافته‌های کامپیوتری بست، بررسی‌های حاکی از تغییرات در شتاب‌های تمایل و فشار در میان می‌تواند انجام شود.
که میزان تصفیه هد غاز از کمترین افت هد لوله‌های متصل به آن، کوکرتکر بخش به وجود این مشکل، روش فوق دارای چندین برتری می‌باشد.

الف- اطلاعات ورودی بسیار ساده است.
ب- هیچ حلقه ای فرآیند نشده است.
ب- شناسایی هر لوله توسط گره‌های دو انتهای آن ساده تر از شناسایی آنها توسط حلقه‌های مجزا است.
د- بر خلاف روش حلقه که در انتیاهی محاسبات افت لوله مشخص می‌باشد، در این روش هد هر گره معمولی می‌باشد.

و جوگردار و نقاط هد که تهیه یکدیگر خصیص محاسبات افت لوله مشخص

به سبب ماهیت غیرخطی رابطه هد و جریان، حل معادلات حاکم بر جریان سیال در شبه‌های هیدرولیکی دشوار می‌باشد. در این حالت می‌توان از روی نیوتن - رافسون برای حل این معادلات غیرخطی استفاده نمود.

در سال ۱۹۷۲ روشی برای خصائص ای این معادلات توسط وود و چارلز ارابی گردید. [114] خصائص این معادلات موجب ساده‌گرایی حل جریان می‌شود. برای این جریان، در مواردی ممکن است روی حلقه ای باعث اجاع ناپایداری که در محدوده این روش، که کمتر است در حالت دیگر، می‌باشد، افزایش سرعت هفرگانی استفاده می‌شود. در این روش برای حالت سیالی محاسبات از مدل ۱۲ استفاده می‌شود.

از رابطه فوق مشخص است که جریان عبوری پس از دو گره i و j را می‌توان به صورت زیر محاسبه کرد.

\[Q_{ij} = h_{ij} / k_{ij} \]

در رابطه (14) Q_{ij} در آن گره و i یا j یا هر دو گره به یک مجموع ضرایب افت و افت دیگر عبوری مشخص می‌گردد. از تابع Solve'er به سیستم Solver و باید مورد مطالعه قرار گیرد که در پایان، Q_{ij} می‌باشد. برای تحلیل جریان h_{ij} باید از جواب Q_{ij} بدست آمده، به صورت در Q_{ij} k_{ij} و با توجه به مقدار h_{ij} Q_{ij} k_{ij} می‌باشد.

\[h_{ij} = C_{ij} \]

در صورتی که جریان خالص جریان از گره i به یا j می‌باشد، اگر Q_{ij} تقسیم از Q_{ij} باشد، با توجه به یکدیگر، این کمیت از تکرار قابل و از تکرار قابل Q_{ij} و با توجه به C_{ij} Q_{ij} با محاسبه می‌شود.

\[Q_{ij} = C_{ij} \]

در صورتی که جریان خالص جریان از گره i به یا j می‌باشد، به‌دست آمده، پس از جریان Q_{ij} از گره i به یا j می‌باشد، در این گره به شکل زیر می‌باشد.

\[\sum Q_{ij} = \sum C_{ij} h_{ij} = q_{ij} \]

در پایان نتایج به دست آمده توسط زیربانه‌سازی روبی خروجی

\[error = \sum j = 1, 2, ..., J \]

\[C_{ij} h_{ij} = q_{ij} \]

\[C_{ij} h_{ij} = q_{ij} \]
شکل 3. روند برنامه کامپیوتری EngineLubSim

4. تحلیل یک مساله ساده شیب و سلسله مسئولیتی شکل (4) را که در مرجع [16] تحلیل شده است را نشان می‌دهد. اطلاعات این شیبکه به صورت فاصله ذخیره شده است.

سپس این شیبکه توسط برنامه کامپیوتری EngineLubSim...
5. تحلیل مدار روان کاری یک موتور نمونه

مداد روان کاری یک موتور 4 سیلندر نیز از برای شبیه‌سازی و تحلیل انتخاب شد. برای هدف‌های از مداخله موتور یکپارچه ۱۶۰۰ استفاده شده است. با برای ثابت‌سازی پالایه و پمپ رونگ از مقداری موجود در مقالات برای موتورهای مشابه استفاده شد. تمام گره‌ها و لوله‌ها شماره گزاری شده که در نهایت هر سه تهیه گردید و با وجود این که مداد با تمام جزییات مدل شده است، با برای درک بهتر مساله از ناشان دادن جزییات مداد صرف‌نظر شد.

شکل (۵) ساده‌ترین مداد روان کاری موتور نمونه را نشان می‌دهد. تا به جز رونگ در مداد به این صورت است که انتهای رونگ توسط پمپ رونگ از مخزن رونگ موتور (گره) مکیده شده و پس از عبور از پالایه رونگ (لوله شماره ۲) وارد مجاری اصلی رونگ می‌گردد. سپس رونگ از مجاری اصلی به پالایه‌ها تغذیه می‌شود. پک شاخه نیز برای روان کاری سیلندر از انتهای مجارا منشی شده است (گره) که نباتانه می‌باشد و اعمال گردد. توپ پالایه پیش‌بازه می‌گردد باید با پاتگری در طراحی راه‌گاه‌ها و انتخاب پمپ مناسب مشکل برطرف گردید.

جدول ۱. مقایسه دیپ‌ها

<table>
<thead>
<tr>
<th>شماره لوله</th>
<th>مدی ۱ از برناوهای EngineLubSim (ft³/s)</th>
<th>مدی ۲ از برناوهای EngineLubSim (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰.۵۷۹۸</td>
<td>۰.۵۷۹۸</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۵۷۹۸</td>
<td>۰.۵۷۹۸</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۵۷۹۸</td>
<td>۰.۵۷۹۸</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۵۷۹۸</td>
<td>۰.۵۷۹۸</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۵۷۹۸</td>
<td>۰.۵۷۹۸</td>
</tr>
<tr>
<td>۶</td>
<td>۰.۵۷۹۸</td>
<td>۰.۵۷۹۸</td>
</tr>
</tbody>
</table>

شکل ۲. مداد ساده هیدرولیکی [۱۶]
رشته سازی سامانه روان کاری موتورهای درون‌سوز به روش خطي شده تصمیح هد

شکل ۵ نمای ساده شده مدار روان کاری موتور نمونه

جدول ۲. هد در گره‌های مدار روان کاری موتور نمونه

<table>
<thead>
<tr>
<th>هد (ارسط)</th>
<th>هد (ارسط)</th>
<th>هد (ارسط)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۸/۱۲۹</td>
<td>۹/۸</td>
<td>۶۰/۹۹</td>
</tr>
<tr>
<td>۱۱۸/۱۲۹</td>
<td>۶۰/۹۹</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳. دیب در مقاطع مختلف مدار روان کاری موتور نمونه

<table>
<thead>
<tr>
<th>دیب در دفیقه</th>
<th>دیب در دفیقه</th>
<th>دیب در دفیقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۳۲۴۲</td>
<td>۸۲۲۷</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰۳۲۴۲</td>
<td>۱۰۰</td>
<td></td>
</tr>
</tbody>
</table>

۶ نتیجه گیری

در این مقاله برای تخمین بار از روش خطي شده تصمیح هد برای تحلیل مدار روان کاری موتور استفاده شده است که برتری این روش بر سایر روش‌های همانکنندگی به شدت، سریع تر بودن این روش و سادگی بودن برنامه نویسی آن است. با استفاده از روش فوق کد کامپیوتری به زبان فرتن نوشته شد. که قادر به تحلیل شبکه Rowan کاری موتورهای درون‌سوز است.

تعداد قرار داده در حالی که به باقی بقایانها روش اضافه تغییر می‌شود. در مورد این موتور پیشنهاد می‌گردد بر اساس اگری راه‌های و انتخاب پیم مبتنی مشکل بر طرف گرد.
Network Analysis Using

مراجع

