بررسی تأثیر سرعت تغییر شکل در فرایند اکسترژون بر روی ریزساختار A356-SiC و خواص مکانیکی کامپوزیت

روح الله رمضانی فرد و فرشاد اخلاقی

چکیده: در کامپوزیت‌های ریختگی (SiC) وجود تخلخل های گازی و انبساطی و نیز خوش‌هم‌های حفره - ذرات و ذره - در بهت تصفیه پیوند فصل مشترک می‌شود. این عمل به باعث می‌شود تا انفعال فصل مشترک به علت موتر در شکست کامپوزیت‌های عمل نیازی. تغییر شکل داغ کامپوزیت‌ها یکی از روش‌های مناسب به تعیین فصل مشترک و کاهش تنش لامینه‌های کامپوزیتی ریختگی است. در این تحقیق کامپوزیت‌های A356 حاوی 10٪ ذرات SiC، که از مابین ترین ذرات قرار گرفته و تاثیر سرعت تغییر شکل بر روی ریزساختار و خواص مکانیکی آنها مورد بررسی قرار گرفته است. نتایج نشان می‌دهد که انجام عملیات اکسترژون به بهبود توسعه ذرات و کاهش درصد تخلخل زمینه و افزایش خواص مکانیکی نسبت به حال ریختگی می‌شود. با انجام افزایش سرعت تغییر شکل شرایط شکست ذرات را حاصل کرده و لذا استحکام نهایی و درصد ازداید طول کامپوزیت تا حدودی افزایش می‌یابد و لذا تیمه لت و آشفتگی می‌یابد.

واژه‌های کلیدی: کامپوزیت A356-SiC، اکسترژون داغ، سرعت تغییر شکل، ریزساختار، خواص مکانیکی

1. مقدمه

امروزه دستیابی به خواص مکانیکی مطلوب در کنار داشتن سبکی و وزن، بیکاری از مهارت‌های کارخانه‌ای تولید قطعات، بروز صیاغ خودروسازی و هواپیماسازی می‌باشد.[1] کامپوزیت‌های زمینه فلزی تقویت شده با ذرات از اجزای مواد مهندسی جدیدی هستند که در جد دهه اخیر مورد توجه محققان و پژوهشگران جهان قرار گرفته‌اند. در میان کامپوزیت‌های زمینه فلزی ذرات متداول‌ترین کامپوزیت مورد مطالعه سیستمیت کامپوزیتی - کامپوپلیسم (Al/Si) می‌باشد که مطلوبیت آن به لحاظ خواص مکانیکی عالی مانند استحکام و مقاومت بالا مقاومت به سایر عالی و مصرف ابزار حلالی‌ای آنتن است. از طرفی آلیاژ‌های Al-Si نیز به دلیل قابلیت

روش هیدرولیکی یکی از مدل‌های نظیری ریختگی کامپوزیت‌ها است که عملکرد شیب اکسترژون (Vortex) و کامپوپلیسم (Compocasting) می‌باشد. در روش کامپوپلیسم عملکرد تلقیف درخت سرزمینی در محدوده می‌توان جاده‌نمایی مابع انجام می‌گردد در حالی که در روش گرداچرخشی عمليه‌های فوق در دما کاملاً مذاب
مواد مورد استفاده و روش انجام تحقیق

مواد مورد استفاده در تحقیق حاضر جزئی انوملی (SIC) در دامنه 1300° ۴ درجه سانتی‌گراد و سایه‌چین A356 به‌دست آمده است. ترکیب آن در محدوده تصفیه‌ای به‌صورت حساسیت تغییر نمی‌کند. 

در این روش انتخاب ذرات SIC در دامنه 1300° ۴ درجه سانتی‌گراد و سایه‌چین A356 به‌دست آمده است. ترکیب آن در محدوده تصفیه‌ای به‌صورت حساسیت تغییر نمی‌کند.

روش‌های تحقیق شکل‌آمیزی و کامپوزیت‌های آن [13] ۴ نشان می‌دهد که انجام فرآیند اکسترژیون بر روی کامپوزیت‌های ریختگی جریه به سمت ناحیه اصلی تخلخل از گرگینگ توزیع محصولی با شکل نهایی مختلف نگذشته می‌شود. 

روش‌های تحقیق شکل‌آمیزی و کامپوزیت‌های آن [13] ۴ نشان می‌دهد که انجام فرآیند اکسترژیون بر روی کامپوزیت‌های ریختگی جریه به سمت ناحیه اصلی تخلخل از گرگینگ توزیع محصولی با شکل نهایی مختلف نگذشته می‌شود.

روش‌های تحقیق شکل‌آمیزی و کامپوزیت‌های آن [13] ۴ نشان می‌دهد که انجام فرآیند اکسترژیون بر روی کامپوزیت‌های ریختگی جریه به سمت ناحیه اصلی تخلخل از گرگینگ توزیع محصولی با شکل نهایی مختلف نگذشته می‌شود.

روش‌های تحقیق شکل‌آمیزی و کامپوزیت‌های آن [13] ۴ نشان می‌دهد که انجام فرآیند اکسترژیون بر روی کامپوزیت‌های ریختگی جریه به سمت ناحیه اصلی تخلخل از گرگینگ توزیع محصولی با شکل نهایی مختلف نگذشته می‌شود.

روش‌های تحقیق شکل‌آمیزی و کامپوزیت‌های آن [13] ۴ نشان می‌دهد که انجام فرآیند اکسترژیون بر روی کامپوزیت‌های ریختگی جریه به سمت ناحیه اصلی تخلخل از گرگینگ توزیع محصولی با شکل نهایی مختلف نگذشته می‌شود.

روش‌های تحقیق شکل‌آمیزی و کامپوزیت‌های آن [13] ۴ نشان می‌دهد که انجام فرآیند اکسترژیون بر روی کامپوزیت‌های ریختگی جریه به سمت ناحیه اصلی تخلخل از گرگینگ توزیع محصولی با شکل نهایی مختلف نگذشته می‌شود.
تغییرات فاکتور توزیع با سرعت پانجر در کامپوزیت SiC آنالوگ-10V%SiC

سایهر تسرئی سرعت تغییرشکل در فرآیند استرسورز بر روی بریده‌های فلزی کامپوزیتی A356-SiC

شکل ۲. تغییرات فاکتور توزیع با سرعت پانجر در کامپوزیت A356-10V%SiC
همانطور که ملاحظه می‌شود، درصد تخلخل در نمونه‌های اکسترود شده کمتر از نمونه‌های ریخته‌گی می‌باشد که این امر ناشی از شدن تخلخل در هنگام اکسترود است.

در ضمن در نمونه‌های اکسترود شده با افزایش سرعت پانچ، میزان تخلخل افزایش می‌یابد. علت این امر افزایش درصد شکست ذرات با چهار افزایش سرعت پانچ می‌باشد (شکل 5) که در نتیجه هدرز ریزی در استحیاء نیازهای مشو می‌شود. سیال از آن آهن افزایش و نیود فرصت کافی برای تغییر داخل این ریز حفرات بین ذرات، منجر به افزایش میزان تخلخل می‌شود.

در شکل 5 تغییرات قطر ذرات در نمونه‌های اکسترود شده به سرعت پانچ می‌شود. سیلیکون به‌طور یکسان بر سطح ذرات در نمونه‌های اکسترود شده ماکزیمم می‌شود. در سرعت پانچ 16 می‌توانید با مقایسه با سرعت 3 میلیمتر بر ثانیه نشان دهید. بطوریکه ملاحظه می‌شود با افزایش سرعت پانچ شکست ذرات افزایش پیدا کرده است.

میزان تخلخل در سطح افزایش یافته است.

یادداشت: برای شکست ذرات در اثر افزایش سرعت سیال در خروجی قابل، سبب تشدید شکست ذرات می‌شود. یعنی با توجه به وجود اصطکاک میان دیواره ان و شمشال، در این مناطق درصد شکست ذرات می‌تواند بالاتر باشد که این عامل منجر به ترک خورده شدن نمونه می‌شود. نتایج تحقیقات N.Chawla از آن چیزی کامیابیت آهنگی کامپوزیت Al2080-20Vol%SiC نشان می‌دهد که نیروی ذرات در سیالیکون‌ها شکست ذرات را با افزایش نرخ کرنش تا بین [6] این محققین آدن داشته را به کاشت چرخ ذرات در سرعت‌های بالاتر کم کردن منجر نمی‌کند. از این رو نشان داده شده است.

جدول 1. آنالیز آنالیز A356

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Zn</th>
<th>Ti</th>
<th>Cr</th>
<th>Ni</th>
<th>Pb</th>
<th>Sn</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>میکروالوم</td>
<td>47</td>
<td>18</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
</tr>
</tbody>
</table>

شکل 7: تغییرات اندازه متوسط ذرات با سرعت پانچ در A356-10Vol%SiC کامپوزیت.
بدرسی تاثیر سرعت تغییر شکل در فراورده‌های پدیم‌پیچ در روش ریزساختار و خواص مکانیکی کامپوزیت

شکل 8. تغییرات مدول بانک بر حسب سرعت پانیچ در کامپوزیت A356-10Vol%SiC با اندازه ذرات 38 میکرومتر

در شکل 9 تاثیر سرعت پانیچ بر روی تنش تسلیم نمونه‌های کامپوزیت نشان داده شده است. همانطور که ملاحظه می‌شود در تمامی حالت‌ها تنش تسلیم نمونه ریختگی است و در ضمن با افزایش سرعت پانیچ تنش تسلیم افزایش می‌یابد. افزایش تنش تسلیم در اثر عملیات اکسترود را نیز می‌توان به افزایش چگالی نهایی ها نسبت داد. از دیدگاه نسبت تنش تسلیم در اثر افزایش سرعت پانیچ را نیز می‌توان با اثر گرفتن افزایش دانسته نجایشها در اثر افزایش نرخ کرنش توجه نمود.

شکل 7. تغییرات درصد تخلخل بر حسب سرعت پانیچ در نمونه کامپوزیت A356-10Vol%SiC با اندازه ذرات 38 میکرومتر

تغییرات مدول بانک با افزایش سرعت پانیچ در شکل 8 نشان داده شده و با نمونه ریختگی مقایسه شده است. به طوریکه ملاحظه می‌شود، مدول بانک در نمونه‌های اکسترود شده در تمامی حالات بالاتر از کامپوزیت ریختگی است، با این حال با افزایش سرعت پانیچ مدول بانک کاهش می‌یابد.

Porosity(%) %

AS-Cast

Punch Speed(mm/s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

As Cast 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

As Cast 1 2 3 4 5

Young Modules (Gpa)

14

12

10

8

6

4

2

0

AS-Cast 1 2 3 4 5

Young Modules (Gpa)

14

12

10

8

6

4

2

0

AS-Cast 1 2 3 4 5

Punch Speed(mm/s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

As Cast 1 2 3 4 5

Punch Speed(mm/s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

As Cast 1 2 3 4 5

Punch Speed(mm/s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

As Cast 1 2 3 4 5

Punch Speed(mm/s)
تغییرات استحکام کشفی نهایی کامپوزیت رویکشی و اکسترود شده
برحسب سرعت پایین در شکل 11 نشان داده شده و با استحکام
کشفی نمونه ریختگی مقایسه درهم است. تخلخل بالا در نمونه‌های
ریختگی وجود خونه‌های جریان، ذره بات بیش به کاهش توجه
استحکام کشفی نهایی کامپوزیت ریختگی می‌گردد که با انجام
عملیات اکسترود و بهبود شدن تخلخل‌ها و نیز متانش شدن
خونه‌های جریان، در انجام استحکام کشفی بهبود می‌یابد. علی‌رغم
همان‌طوره‌ای که در گزارش بالاتر اشاره شده بافندگی در
شکست دراز و در شکست ذره در شکست تخلخل و ایجاد منگک
در توزیع می‌شود، با این‌ها ممانعت‌هایی ملاک‌های می‌شود استحکام
نهایی کامپوزیت با افزایش سرعت پایین کاهش یافته است.

شکل 11. تغییرات درصد ازدیاد طول برحسب سرعت پایین
A356-10Vol%SiC
در کامپوزیت

4. نتایج گیری
نمونه‌هایی از کامپوزیت A356-10Vol%SiC با استحکام
گرم از نمونه‌هایی که در ۵۵و درجه سانتی‌گراد، ۵ و
۳ میلی‌متر به ترتیب تحت تغییر شکل فاز گرفته و نتایج
قابل حاشیه است. در انجام عملیات اکسترود بهبود
توزیع ذرات در زیمنه شده و در ضمن افزایش سرعت پایین
یک‌واکتیت توزیع ذرات در زیمنه کاهش یافته می‌یابد.

در اثر عملیات اکسترود شکست دراز رخ می‌دهد که
این امر با افزایش سرعت پایین نئیشن می‌شود.

در اثر عملیات اکسترود، مندل بنام استحکام کشفی
نهایی و ازدیاد طول نمونه‌ها در مقایسه با نمونه
ریختگی افزایش می‌یابد ولی با افزایش سرعت پایین این مقدار
کاهش می‌یابد.

4. افزایش سرعت پایین اکسترود شده در شکست دراز
ازدیاد طول نمونه نسبتاً زیادی را نشان می‌دهد. برای مثال
با افزایش سرعت پایین از ۵ mm/s به ۱ mm/s
ازدیاد طول نمونه به جز ۱۲/۱ درصد

شکل 10. تغییرات استحکام کشفی برحسب سرعت پایین
A356-10Vol%SiC
در کامپوزیت

مراجع
[1] Lindroos, V.R., Talvitie, M.J., "Recent Advances in Metal
Matrix Composites", Journal of Materials Processing


