مولی تکرار مس به روش الکتروشیمیایی

محمد شیخ شابی، محمد رضا افشار مقدم و احسان علی‌ونی

چکیده: روش الکتروشیمیایی تولید اکسید مس (I) مبتنی بر احالت آن در الکتروینیت آب حاوی بینی و تشکیل میکلزه‌های کلرید مس و سیاسی هیدراتن شدن آن توسط بیشتر هیدروکسی کلسیم ناشی از آزاد شدن گاز هیدروژن در بخش مایع و نتیجه وابستگی الکتروشیمیایی هیدراتنی سیاسی، تشکیل اکسید مس (I). در این روش مواد نیازمندی‌های اولیه بر اکسید مس شامل غلظت دی‌گروتل مناسبی به عنوان افزودنی بازسپرسی محلول، غلظت کلرور سدیم، داشتن جریان و دما و تری رشته ای الکتروشیمیایی، علی‌اکرامی جریان و مصرف نیازی آن را می‌باشد.

ویژه از روش مورد بررسی قرار گرفته است. بر این اساس شرایط بهینه به شرح زیر به دست آمده است: مقدار نیازمندی مس 90-120 مول/لیتر، دمای جریان در کنترل مقدارها، تولید بیشتر و کیفیت بالاتر محصول، برای تولید مس این روش در منطقه کوهستانی سیاسی احتمالاً مرسوم نخواهد شد.

1. مقدمه

امروزه روش رسوب‌دهی الکتروشیمیایی برای تولید اکسید فلزات مورد توجه قرار گرفته است. این روش از طریق بروز روند دریایی و به دست آوردن عنوان فلزات استفاده می‌شود. مس (I) در صنایع سرامیک‌ها به عنوان عنوان کلرید مس در سایه‌ای به عنوان گونه مورد استفاده قرار دارد. اکسید مس (I) در سایه‌ای به عنوان عنوان گونه مورد استفاده قرار دارد.

از اکسید مس (I) در صنایع کشاورزی به عنوان ضر قارچ و در صنایع برنج به عنوان منبع مصرفی کاسته کننده گونه استفاده می‌شود. اکسید مس (I) در صنایع سرامیک به عنوان گونه دانه مصرف می‌شود. همچنین، عنوان کانال‌های از بین بردن به وسیله هم‌تیمی هدایت اکسید مس (I) از آن در ساخت سنگ‌های خورشیدی ارزان فیل استفاده شده است.

richtext

روش الکتروشیمیایی تولید اکسید مس مبتنی بر الکتروینیت محلول آبی ممکن است به صورت مولی پیوسته به صورت مولی پیوسته مورد استفاده قرار گیرد.

تاریخ دریافت: 85/12/15
تاریخ نهایی: 85/12/30

دکتر محمد شیخ شابی، دانشگاه علم و صنعت ایران، تهران، mhafghi@iust.ac.ir
دکتر مجید ضعیفی، دانشگاه علم و صنعت ایران، تهران، mhrarsh@iust.ac.ir
دکتر رضا علی‌ونی، دانشگاه علم و صنعت ایران، تهران، ealavi@connect.carleton.ca

واکنش اساسی کاندیت آزاد شدن هیدروژن در مس به سیاسی (I):

\[Cu + nCl^− → CuCl_n \quad (n=2, 3) \] (1)

واکنش اساسی کاندیدای ترکیب و در محلول قلیایی غنی از تراکم، از مکانیسم احالت آن در سیاسی و رسوب‌دهی تراکم هیدراتن‌دهی (الکتروشیمیایی) استفاده می‌شود.

\[2H_2O + 2e^− → H_2(g) + 2OH^− \] (2)

واکنش شیمیایی شامل هیدرات‌دهی و تشکیل رسوب می‌باشد.

\[2CuCl_n + 2OH^− → Cu_2O \downarrow + H_2O + nCl^− \] (3)
2-آزمایش‌های انجام شده

1- مواد اولیه

جنس آند کاکد از تسمه‌بندی با کلیه آزمایش‌ها نتایجی درصد

این روش نشان دهندگی بوده و در

مقدار می‌باشد. مقدار CuO نیاز می‌باشد.

بین‌ارای واکنش کل سیل، حاصل جمع معدات 1 تا 3 می‌باشد:

\[2Cu + H_2O \rightarrow Cu_2O(g) + H_2 \]

(4)

بی‌هویت‌سوزی (OH⁻) باعث تیک‌سازی CuO در این راستا افزودن NaOH به عنوان ماده افزودنی در محلول اکسیداسیون موجب افزایش پدیده‌ای غلطت بین

به عنوان NaOH از تأثیر کابیت به پدیده در منطقه

پدیده‌ای غلطت بین به ترتیبی، CuCl از ضعیف شروع می‌شود، منطق

الکترود، واکنش احیای CuO که این اجسام گنجانده می‌باشد.

بر طبق واکنش شیمیایی اصلی (واکنش 3)، بی‌هویت‌سوزی CuO در واکنش کانی، تولید شده و با مراحل مربوط به سی

به سی

تیک‌سازی مورد ارزیابی احیای CuO در محلول بازی به طور جزیی به این‌وراری کرومات تجزیه می‌شود.

\[CuO + H_2O + 2e^- \rightarrow Cu^{2+} + 2OH^- \]

(5)

2- تجهیزات مورد استفاده و روش آزمایش

سیستم تیک‌سازی به عنوان ماده‌ای کننده یا بزر دانه توانایی جلوگیری از اجسام واکنش احیای CuO به یون مس فیزی.

\[CuO + H_2O + 2OH^- \rightarrow 2Cu^{2+} + 2H_2O \]

\[Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^{2-} + H_2O \]

(6)

\[CrO_4^{2-} + 4H_2O + 3e^- \rightarrow Cr(OH)_3 + 5OH^- \]

(7)

به‌طور کلی بی‌هویت‌سوزی تولید شده به صورت لایه‌ای روی کاند را

لایه‌های کننده انتقال مسدود می‌شود. پیدا می‌کند. در حالتی که احیای CuO از نظر شرایط بهینه، مقادیر مختلف برای دانستنی جریان و غلظت

از گزارش‌های تحقیقات صنایعی [16] ارائه شده است.

ابن اختلاس‌ها می‌توانند نشان از ناگفته در طراحی سیستم‌ها، شکل و

ابعاد اکسید‌ها و تغییر در هیدروگلیک کلینتزه در جین

دوره اکسید‌زایی باشند. [16]

در مطالعه‌های اکسیدزایی بر روی حاضر، به بررسی نیروی دو

شاخص مهم تغییرات رادمان جریان و مصرف ویژه ارزی

برداشت‌های و با پدیده بهینه‌ای، آن‌ها با تغییرات عواملی جنگ‌مانده گزارش‌های انتقالی غلظت نمک عاملی باربی‌سیاسی

محلول اکسیداسیون، دما و استفاده از قدرودی، دی‌کرومات تیک‌سازی بر

این دو شاخص اصلی بررسی شده است.

شکل 1. شکل شماتیک سیلول

CuO

اردی

گره

کرک‌تر

تولید شده از روزی کاهش وزن آند محاسبه می‌شود.

مقدار

فاصله آند از کاند آند مادر

می‌باشد.

سیستم با پاره‌ای ترکیب کاملاً از رسوبات

چسبندی بقاییانه از نیروی بطور کلی ممکن به باقی

و توضیح می‌تواند قابل طبیعتی باشد.

سیستم با پاره‌ای ترکیب کاملاً از رسوبات

چسبندی بقاییانه از نیروی بطور کلی ممکن به باقی

و توضیح می‌تواند قابل طبیعتی باشد.

سیستم با پاره‌ای ترکیب کاملاً از رسوبات

چسبندی بقاییانه از نیروی بطور کلی ممکن به باقی

و توضیح می‌تواند قابل طبیعتی باشد.
برای مطالعه و انالیز روابط حاصل با تغییرات در ابعاد و شکل‌گیری کروم‌یونه‌های CuCl، در موارد مختلفی از درصد مولی CuCl به مرحله شستشو و زدایی اکسید CuCl به اکسید CuCl.

table: {
<table>
<thead>
<tr>
<th>(\text{CuCl})</th>
<th>(\text{g/l})</th>
<th>(\text{Am}^+)</th>
<th>(\text{g/l})</th>
<th>(\text{NaOH})</th>
<th>(\text{g/l})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>0.10</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>0.15</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>0.20</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>0.25</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>0.30</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>0.35</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
</tr>
<tr>
<td>0.40</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td>0.45</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td>0.50</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
</tr>
</tbody>
</table>

مقدار تغییرات در pH

\[
\text{pH} = \frac{\text{عدد مولی CuCl}}{\text{عدد مولی NaOH}}
\]

در هر عنصر احتمالی‌تر قرار گرفت. در اینجا از اندازه‌گیری pH استفاده شده است. به علت اینکه در هر عنصر pH این مقدار به صورت ثابت می‌باشد، به شدت می‌توان از این مقدار برای تغییرات در pH استفاده نمود.
جدول ۲ تغییرات pH و رنگ محلول در آزمایش تغییر

<table>
<thead>
<tr>
<th>pH NaOH (g/l)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH محلول</td>
<td>7.30</td>
<td>7.20</td>
<td>7.17</td>
<td>7.14</td>
<td>7.11</td>
<td>7.08</td>
<td>7.05</td>
</tr>
<tr>
<td>ΔpH</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>رنگ</td>
<td>تیره-رød</td>
<td>ناهار-رød</td>
<td>رود-رød</td>
<td>زرد-رød</td>
<td>سبز-رød</td>
<td>تیره-رød</td>
<td>تیره-رød</td>
</tr>
<tr>
<td>پریش NaCl</td>
<td>10۵</td>
<td>10۳</td>
<td>10۱</td>
<td>10۹</td>
<td>10۷</td>
<td>10۵</td>
<td>10ۢ</td>
</tr>
</tbody>
</table>

محصولات جیبندی روی آن می‌شوند نسبت داد نمونه‌ای از این واکنش‌های فرضی می‌باشد:

\[4\text{CuCl}_2 + 2\text{OH}^- + \text{O}_2 + 2\text{H}_2\text{O} = (\text{Cu}_2\text{O})_4\text{Cl}_2 + 6\text{Cl}^- \] \((8) \)

NaCl حضور این ترکیب در دیگر باور پذیرا در حالت غلظت باید قابل مشاهده است. این محصولات جیبندی بروی آن باعث می‌شوند که احتمال تبدیل انجام شده و راندمان آزمایش کاهش یابد. در آزمایش که با گاز CuO سوخته شد، CuO

منعطف سیاه رنگی را اند مشاهده گردید که احتمالاً می‌باشد این نشان دهنده این جریان بود.

NaCl با منظور تعیین غلظت بهینه تعدادی آزمایش در دمای ۰ تا ۸۵ درجه C طراحی می‌شود. غلظت NaCl برای طراحی گذاری خوراکی NaOH غلظت در محدوده ۰ تا ۱۰۲۰ می‌باشد. مقدار زمان آزمایش ۲۰ دقیقه و دانستی گریز را به‌صورت ۹۰۰ تابت نگه داشته شد، نتایج این آزمایش‌ها در شکل های (۵) و (۶) نشان داده شده است.

![شکل ۳ اثر غلظت NaOH بر مصرف ویزه انرژی](g/l)NaOH (g/l)NaCl غلظت

![شکل ۴ اثر غلظت NaOH بر راندمان جریان](g/l)NaOH (g/l)NaCl غلظت

به‌منظور تعیین غلظت بهینه تعدادی آزمایش در دمای ۰ تا ۸۵ درجه C طراحی می‌شود. غلظت NaCl برای طراحی گذاری خوراکی NaOH غلظت در محدوده ۰ تا ۱۰۲۰ می‌باشد. مقدار زمان آزمایش ۲۰ دقیقه و دانستی گریز را به‌صورت ۹۰۰ تابت نگه داشته شد، نتایج این آزمایش‌ها در شکل های (۵) و (۶) نشان داده شده است.

![شکل ۵ اثر غلظت NaCl بر راندمان جریان](g/l)NaCl غلظت

با بررسی اختلاف pH بین دو زمان آغاز و پایان آزمایش (ΔpH) مشاهده می‌شود که با قرار گرفتن NaOH غلظت افزایش می‌شود. به‌ظاهر مقدار ΔpH می‌تواند دلیل انجام واکنش‌های مصرف کننده بروی NaOH غلظت و همچنین مشاهده رنگ محصول در pH هم مشاهده شده است.

![شکل ۶ اثر غلظت NaCl بر مصرف ویزه انرژی](g/l)NaCl غلظت

نقطه تیره‌تری (Figuera) برای مقدار منفی اختلاف رنگ‌های به‌دست آمده و برای مقادیر منفی pH مصرف کننده بروی NaOH غلظت می‌شود که با افزایش pH مصرف کننده بروی NaOH غلظت به‌صورت گرمایشی CuCl تشکیل جنگل‌گری شود و هم از انجام واکنش‌های فرعی مصرف کننده بروی NaOH غلظت انرژی می‌شود.
در راندمان جریان کاهش یابد، در حالی که در انجا عکس این مطلب مشاهده می‌شود. از انجا بنا به محاسبه مصرف ویتامین انتزی، ولتاژ کاری سلول دلخواه دارد، یعنی عوامل سینتیکی چون پالریزاسیون غلطی محلول الکترولیت نیز در مقدار آن پایین می‌آید.

اهنگ کمتری دارد. غلظت‌های بیشتر از 240 g/l نسبت به

\[Cu + nCl^- = CuCl_n \]

نباید واکنش افزایش غلظت بیوپوزیتیو و واکنش به سمت

\[Cl^- \] باعث پیشرفت واکنش به

\[NaCl \]

رندامان جریان و کاهش مصرف انتزی را به همراه می‌آورد. از طرفی،

افرازیون غلظت NaCl باعث آشفتگی هدایت بیوپوزیتیو و کاهش تا

ولتاژ کاری سلول می‌شود. اثرات چگالی جریان آندری بر بازه جریان

\[\text{شكل 7. تأثیر چگالی جریان آندری بر بازه جریان} \]

باید توجه داده شود که در غلظت‌های بالای

\[NaCl \]

با توجه به نتایج بدست آمده و توضیحات فوق، غلظت بهینه

\[330 g/l \]

نتیجه مطابق نتایج در اثربخشی

\[CuCl \]

طرمی در سطح باعث تغییر اندازه آن در سطح الکترود با مقدار این غلظت در توده محلول سنگ آهیده بوده است. باعث بوجود آمدن پالریزاسیون بیوپوزیتیو غلظت

\[CuCl_n \]

یکدیگر نیز می‌باشد. اختلاف غلظت به‌ویژه مس حلال شده در سطح الکترود با مقدار این غلظت در توده محلولسنگ آهیده بوده است. باعث بوجود آمدن پالریزاسیون بیوپوزیتیو غلظت

\[CuCl_n \]

به تبع آن مصرف ویتامین انتزی را در پی دارد. الکتریزی درا و غلظت عمیق می‌دهند. در این روش ایجاد چگالی جریان آندری، اختلاف غلظت بیوپوزیتیو را توجه افزایش سرعت خروجی آن، بیشتر می‌شود و پالریزاسیون غلظت الکتریزی می‌یابد. که این امر افزایش ولتاژ مصرف و هبیع مصرف ویتامین

\[\text{شكل 8. تأثیر چگالی جریان آندری بر مصرف ویتامین انتزی} \]

برای بررسی اثر دانشی جریان آندری در فرآیند الکتریزی، تعدادی

\[100 \text{ دی‌کرومات پانسیم و در دمای} 80^\circ \text{C به مدت} 30 \text{ دقیقه} \]

\[\text{انجام شد. نتایج این آزمایش در شکل‌های (7 و 8) نشان داده} \]

\[\text{شده است. همانندی که مشاهده می‌شود، با افزایش دانشی جریان آندری حداکثر} 140 \text{ Am}^{-1} \text{ می‌آید و بیش از آن را به کاهش می‌گذارد. از طرفی، مصرف ویتامین انتزی را با جریان آندری} \]

\[100 \text{ Am}^{-1} \text{ حداکثر} \]

\[\text{اراده و باعث نسبت به بعد ترکیب آتی می‌شود. از آنجا که کاهش راندمان جریان به یعنی معنی

\[\text{است که مقدار بیشتری از منابع در(client) صفحه انتقال که مصرف ویتامین انتزی با افزایش} \]

\[\text{سیل سیالات} \]

\[Cu_2O \]

می‌شود پس باید انتظار داشت که مصرف ویتامین انتزی با افزایش
References:

