تولید اسید مس به روش الکتروشیمیایی

محمدرضا افشار مقدم و احسان علی‌مقدم

چکیده: روش الکتروشیمیایی تولید اسید مس (I) مبتنی بر انحلال آنی مس فلزی در الکترولیت آب حاوی بنزین، کربن و تشکیل میکروکامیهای کربنید مس و سپس حاوی آن توسط پیوندی برداشتن نانوساختار از آزاد شدن کربن و تشکیل شیمیایی هیدرات‌سانی، تشکیل اسید مس (I) است.

در این پژوهش تأثیر متغیرهای مولر بر الکترولیز شامل غلظت حمض، slash به عنوان متغیر مستقل با روابط مولکول، غلظت کلور سدیم، داده‌های جریان و دما و دو شاخص مهم الکترولیز، عیت رادانم جریان و مصرف ویژه انرژی مورد بررسی قرار گرفته است. بر این اساس شرایط بهینه به شرح زیر به دست آمده است:

درصد‌های مصرف

ورودی

V=5-80، Cn=240، g/L، NaOH = 0.5، K2Cr2O7 = 0.1

واژه‌کلیدی: الکترولیز، مناسب‌کردن انحلال آنی، بایادی، رادانم جریان، اکسیدهای مس

مقدمه

اروموز روش روس‌ساهی الکتروشیمیایی برای تولید اسید فلزات مختلف، نظیر تجزیه مس مورد توجه قرار گرفته است. این روش خصوصاً برای تولید اسید مس به واسطه مراحل کوتاه تولید، هزینه کمتر راهبردی آسان‌سازی کردن کنترل متغیرها، تولید بیشتر و کمیت بالاتر محصول، برای تولید در مقياس این امور در بین روش‌های دگر متشابه است [21].

از اسید مس (I) در صنایع کشاورزی به عنوان پایه قارچ و در صنایع سنگ به عنوان اسید غیر طبیعی در درگذوش بدن کشتی استفاده می‌شود. اسید مس (I) در صنایع سرمایک به عنوان زنگ دهنده مصرف می‌شود. همچنین، به عنوان کانالیزاسیون بیماری فراوانی‌های شیمیایی کوباندار، در برخی از محصولات خاصی به عنوان تهیه های مس (I) از آن در صنعت سولفات خورشیدی ارزان قیمت استفاده شده است [21].

روش الکتروشیمیایی تولید اسید مس مبتنی بر الکترولیز محول آبی نمک طعام از مواد زیر می‌باشد.

این پژوهش در این پژوهش، بر اساس آنی مس اسید مس (I) را تولید کرده است.

درصد کربن‌های شبیه به

واکنش اساسی آنی ساخت آنی مس می‌باشد:

Cu + nCl⁻ + c = CuCl2⁺(n) (1)

واکنش اساسی کننده شال آزاد شدن هیدروژن می‌باشد:

2H₂O + 2e⁻ = H₂(g) + 2OH⁻ (2)

واکنش شیمیایی شال هیدرات‌سانی و تشکیل رسوی می‌باشد:

2CuCl2⁺(n) + 2OH⁻ = Cu₂O↓ + H₂O + nCl⁻ (3)

تاریخ وصول: ۸/۲۱/۱۵۸۹
تاریخ صبوب: ۹/۲۰/۱۵۸۹

دکتر محمد شیخ شاملی، دانشیار دانشگاه مهندسی معدن و مکانیکی
mhashgh@iust.ac.ir
‌دکتر مجید امیری، دانشیار دانشگاه مهندسی معدن و مکانیکی
mrafshar@iust.ac.ir
‌انیا شرایط
eulavi@connect.carleton.ca

ناشر: دانشگاه مهندسی و مکانیکی تهران، تهران
انتشار: سال ۱۳۸۳, صفحه ۱۲-۱۹
بنابراین واکنش کل سلول، حاصل جمع معادلات (1) و (2) می‌باشد:
\[2Cu + H_2O \rightarrow H_2(g) + Cu_2O \]

(3)

یونه‌های هیدروکسیل (OH⁻) برای تشکیل CuO، به عنوان ماده افزودنی در محلول NaOH موجود در آزمایش‌های برابری سلول بیشتر یونه‌های CuO، به عنوان pH کرابی را به انتظار کافی به دور از منطقه هیدروکسیل شد و اضافه شد. Cu، به تقریباً به عنوان pH، می‌کند.

بر طبق واکنش شیمیایی اصلی (وامک) یونه‌های هیدروکسیل (OH⁻) به قسمت آبی می‌رسند. برای جلوگیری از احیاء CuO به سی فلزی افزودنی های مانند Khویاک که نتایج استفاده قرار می‌گیرد. واکنش احیاء CuO که البته است:

\[Cu_2O + H_2O + 2e^- \rightarrow 2Cu + 2OH^- \]

(5)

دی کرومیت تناسیم به عنوان مانع کننده یا یک دارنده توانایی جلوگیری از احیاء وانکش احیاء CuO به بودر مس فلزی در چک سایار (وامک) را دارد [1]

ماکسیم سیال مانعی کننده این سیال در چک سایار دی کرومیت در محلول بازی به طور جزئی به انتخاب دی کرومیت تناسیم تجهیز می‌شود.

\[Cr(OH)_2^+ + 3e^- = Cr(OH)_3^+ + 5OH^- \]

(6)

سیس یونه‌های دی کرومیت در چک سایار زیر احیاء می‌شوند:

\[CrO_2^+ + 4H_2O + 3e^- = Cr(OH)_3^+ + 5OH^- \]

(7)

هیدروکسید نانوهالی ثابت‌نگار شده به صورت لایه‌ای نارنجی رنگ کردن را می‌پوشاند. این لایه هالی الکترپلیستیک است. بنابراین واکنش کاندی آذر شدن هیدروکسی یک چهارم آدام با می‌کند که به احیاء CuO به سیل مانعی می‌شود.

از نظر شرایط بیننده، مقادیر مختلفی برای دانستن جریان و غلظت در زیر راه‌های تحقیقات سایرین [آوآوآ] ارائه شده است که این اختلافها می‌تواند ناشی از تفاوت در طراحی سلول‌های وکنش و الکتروداگ و تغییر در هیدروکسیل کرکلکتور در هنگام دی کرومیت تناسیم [8].

در مطالعه فرآیند الکترولیز در پروژه حاضر، برای بررسی تغییرات ذوب شاخه مهم و تغییرات رادنام جریان و مصرف ویژه ارزی پدیده‌های شده و با هدف استفاده به شرایط بیننده کاری تأثیر عوامله مانند جریان آرام، غلظت تیکر مطلوب، باربنیشن محلول الکترولیت، دما و استفاده از مانعی دی کرومیت تناسیم بر این دو شاخه اصلی بررسی شده است.
برای مطالعه و انالیز رسوب حایل بايد فرآیندهای تکمیلی بر روی روسپ انجام دهد. برای این منظور با محلول الکترولیت فرست داده شد تا رسوب درون آن کامل تشکیل شود. سپس به مدت 11 بر مخلوط سریز و با ایجاد پایدار جریان نیز رسوب کامل گردید که محلول روسپ بیایید. نتایج نشان دهند رسوب گالیکس، برای طرحونی از تکمیل مرحله شستشو و دیاپزی کمک کرده است. در مورد محلول حلال آلی از جمله قریشی، طعم‌های تیازه‌سازی گلوز زئینن گی تیاسوانه (Benzotriazole) با غلظت I/40 اتانل توسط محلول پنتزتراتوروز و محلول پایدار کننده بر روی روسپ که در یک طرف سربست سیره شده بود آزاد شد. پس از پایدارسازی به مدت 24 ساعت به طور میانگین، درب طرف سربست و محلول حلال آلی از آن سربست گردید و پس طرف در با از باکس سیکلر کاهش و خلاء نسبی ایجاد گردید. سپس از ان سیکلر درون شکاف کن قرار داده می‌شد و رسوب در دمای 70 °C به مدت یک شب خشک نشده و رسوب قرم دنگ اکسید مس (I) در فرآیند بسته‌ای.

cCu

NaOH

cCuCl

(II, I)

K

Cr

O

(I)

2

3

Al

Cl

NaOH

CuCl

3

NaOH

III

IV

2

3

Al

Cl

NaOH

3

NaOH

III

IV

2

3

Al

Cl

NaOH

(KHCO₃)

(KHCO₃)

III

IV

2

3

Al

Cl

NaOH

(KHCO₃)
جدول ٢- تغییرات pH و رنگ محلول در آزمایش تغییر

<table>
<thead>
<tr>
<th>NaOH (g/l)</th>
<th>0/0</th>
<th>0/0/5</th>
<th>١</th>
<th>٢</th>
<th>٤</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHم.Status</td>
<td>٣/٠٠</td>
<td>١/٠٠</td>
<td>١/٠٧٧</td>
<td>٦/٠٤</td>
<td>٨/٠٤</td>
</tr>
<tr>
<td>pHم.Status</td>
<td>٣/٠٠</td>
<td>١/٤٤</td>
<td>١/٤٣</td>
<td>٦/٢٢</td>
<td>٨/٣٢</td>
</tr>
<tr>
<td>ΔpH</td>
<td>٠/٠٠</td>
<td>٠/١٤</td>
<td>٠/٣٤</td>
<td>٠/١٠</td>
<td>٠/٠٣</td>
</tr>
<tr>
<td>Color</td>
<td>Bright-Red</td>
<td>Red-Violet</td>
<td>Dark-Red</td>
<td>Dark-Red</td>
<td>Dark-Red</td>
</tr>
</tbody>
</table>

محصولات جسیبده روي اند مي شوند نسبت داد. نمونه‌اي از اين واکنش‌هاي فرعي چنين است:

\[
4\text{CuCl}_2 + 2\text{OH}^- + \text{O}_2 + 2\text{H}_2\text{O} = (\text{g}) (\text{g})\text{Cu}_2(\text{OH})_2\text{Cl} + 6\text{Cl}^-
\]

NaCl حضور آن تركيب در دياغرام یوره در حالت گلخالت بالای قابل مشاهده است. این محصولات جسیبده روي اند باعث می‌شوند که اندازه سختی انجام دهد و راندمان جریان کاهش یابد. در آزمایش که با اکسیژن غاز در ۸۰ سود سوزار انجام شده، CuO از طرف سیال رنگی روی اند مشاهده گردید که احتمالاً می‌باشد. این رنگ به دلیل می‌شود به این سبب به‌جای ورزش.}

NaCl- ٢- اثر غلظت

به منظور تعیین غلظت پیوسته، تعدادی آزمایش در دمای ۳۰۰°C انجام شد. غلظت NaOH برای گزارش و غلظت NaCl در محدوده ۰/۰-۲۰۰ g/l تغییر داده شد. داده‌های مربوط به غلظت NaCl و pH در دانستی گریان برای ۵۰۰ Am تابث نه داشته شد، نتایج این آزمایش‌ها در شکل‌های (۵) و (۶) نشان داده شده است.

![شکل ۲- اثر غلظت NaCl بر مصرف ویژه انرژی NaOH](g/lNaCl.jpg)

![شکل ۳- اثر غلظت NaCl بر راندمان جریان NaOH](g/lNaCl.jpg)

![شکل ۴- اثر غلظت NaCl بر مصرف ویژه انرژی NaOH](g/lNaCl.jpg)

با بررسی اختلاف pH بین دو زمان آغاز و پایان آزمایش (ΔpH) مشاهده شد که با افزایش غلظت NaOH مقدار ΔpH منفی می‌شود که می‌تواند دلیل انجام واکنش‌های مصرف کننده بون باشد. تغییرات pH و همچنین مشاهده رنگ محصول در OH⁻ جدول ٣ این شده است. با بررسی اختلاف pH بر اساس مشاهدات Figuera برای مقدار منفی اختلاف رنگ‌های تیوه برای الکترون‌دیا و برای مقدار منفی آن رنگ‌های روان‌تر اندازه می‌یابد. نتایج حاصل از این پژوهش نشان دادند این شاهد مقدار بهینه برای غلظت NaOH طبیعی که از تشکیل جلی‌گری شود و هم از انجام واکنش‌های فرعي مصرف کننده بون اکسیژن می‌شود.
تولید اکسید آهن با روش الکترودیمیایی

راندمان جریان کاهش یابد، در حالی که در انجا عکس این مطلب مشاهده می‌شود. از انجا که در محاسبه مصرف ویژه انرژی، ولتاژ کاری سولن داده می‌شود. لذا عوامل سینی‌گنج پالریزاسیون غلظت محلول الکترولیت نیز در مقدار آن دخیل هستند.

اهنگ کمتری در سه نوع الکترود یا پلستیک، در محلول NaCl نمک و ترسبی CuCl۲ در محلول NaCl هم بر فرآیند الکتروزی اثر معنی‌دار و هم محسوس را امده و شستنی می‌تواند ریز کند.

تأثیر افزایش غلظت NaCl بر پیشرفت فرآیند را می‌توان به تبیین کرد که می‌تواند از دیدگاه تئوری الکترولیت و کاهش تابیل الکترولیت این الکترود نیز در محلول الکترولیت نیز در مقدار آن دخیل هستند.

Ca + nCl⁻ = CaCl₂n⁻

بنابراین واکنش الکترود غلظت پون Cl⁻ باعث پیشرفت واکنش NaCl می‌شود که در غلظتهای بالای Cl⁻ تأثیر منفی ایجاد کرده و در واکنش آن هم در واکنش آن می‌شود، به طوری که در غلظتهای بالای CuCl۲ همین الکترود نیز در واکنش آن کاهش می‌یابد.

NaCl + NaCl

Ca + nCl⁻ = CaCl₂n⁻

با توجه به نتایج بدست آمده و توضیحات فوق، غلظت بهینه NaCl، CaCl۲ و CuCl۲ می‌تواند به دست آمده باشد و از تشکیل ترکیب ناملول مواد معدنی شود و هم از اشکاب نمک طعم در محلول می‌گردد.

شکل 7. تأثیر چگالی جریان آنی در بر یا بر کاهش جریان

شکل 8. تأثیر چگالی جریان آنی در بر مصرف ویژه انرژی

اگر ولتاژ نتیجه لازم برای فرآیند الکتروزی، V٢ که در نظر گرفته شود ولتاژ کاری لازم برای الکتروزی علاوه بر V٢ شامل فاکتور‌های دیگری نیز می‌باشد، اختلاف غلظت پهن‌تر می‌شود به نظر می‌رسد در سطح الکترود با مقدار انی غلظت در ترکیب می‌شود به وجود آمده بازی‌رسوسیون یا فاکتور مقدار می‌شود که از فرآیند ولتاژ کاری سولن به علت این منجر می‌شود که از آن سرعت ویژه انرژی را در به دارد، الکترود دما و غلظت به هم وحن محلول الکترولیت، مقدار پالریزاسیون غلظتی می‌شود که کاهش چگالی جریان آنی، اختلاف غلظت پهن‌تر روی سطح می‌شود، باعث بیانیم که این مقدار ویژه انرژی زیر را باعث می‌شود در چگالی جریان آنی بازی‌رسوسیون الکترود و تابیل و ولتاژ و جریان مشاهده می‌گردد. این نتایج را می‌توان به انجام غلظتی بر منفی نسبت داد.

همان‌گونه که مشاهده می‌شود، با افزایش گلیکس انرژی تا ۶۰۰ Am² / 500 g / l، سود سوزار در مقدار ۲۵ کلرودیدیم / 50 Am² / 500 g / l مشاهده می‌شود. اگر چگالی جریان ۵۰۰ Am² / 500 g / l قرار گیرد، ولتاژ کاهش می‌یابد. از طرفی، مصرف ویژه انرژی زیر را باعث می‌شود در چگالی جریان آنی بازی‌رسوسیون الکترود و تابیل و ولتاژ و جریان مشاهده می‌گردد. این نتایج را می‌توان به انجام غلظتی بر منفی نسبت داد.

همچنین در چگالی جریان آنی بازی‌رسوسیون الکترود و تابیل در حقیقت تلف نیز که این خود نیز
افزایش مصرف ویژه انرژی را به همراه دارد. با توجه به این نتایج، مقدمات و توضیحات فوق، مقرارت بهینه چالیج جریان آنالی در محاسبه

800-1000 Am²-1 بیشتر می‌گردد.

散 (5-3) برای بررسی تأثیر دما تعداد آزمایش در دمای 60 و 80 درجه سانتی‌گراد و در شرایط غلظت کریستال سدیم برابر 4.64 تا 5.67 % انرژی بهرهبرداری از توانایی افزایش آنالی به سمت مثبت و منجر به کاهش نسبی انرژی بهره‌برداری و عوامل و یک نتیجه از بررسی دما، کاهش می‌یابد. در نهایت، به هر دما بستگی دارد که قدرت توده‌نوری می‌شود. دمای بهینه بین 150-300 درجه سانتی‌گراد است. هم‌اکنون آزمایش‌ها به خاطر جوشش محلول و تولید حباب‌های آبی و اکسید شدن Cu₂O تولیدی توصیه نمی‌شود.

![شکل 9. اثر دما بر پراکندگی جریان]

![شکل 10. اثر دما بر مصرف ویژه انرژی]

4. اثربخشی و نتایج

با توجه به نتایج بدست آمده در این پژوهش شرایط بهینه برای تولید آکسید مس (I) به روش الکتروشیمیایی به صورت زیر می‌باشد: