MATHEMATICAL MODELING AND SIMULATION OF HEAT AND MASS TRANSFER EFFECTS ON REMOVAL EFFICIENCY OF PARTICULATE MATTERS IN VENTURI TYPE SCRUBBERS

Amir Rahimi & Anis Bakhshi
Department of Chemical Engineering, College of Engineering
University of Isfahan, Isfahan, Iran,
rahimi@eng.ui.ac.ir

Abstract: In present study a mathematical model is developed in order to examine the effects of heat and mass transfer on removal efficiency of particulate matters in Venturi type scrubbers. The governing equations including the particulate concentration, gas temperature, droplets temperature, droplets diameter, and droplets velocity equations are obtained by using the conservation laws and solved numerically. To validate the mathematical model, necessary data was measured and collected in a commercial cement plant that uses this type of scrubbers. The governing equations including the particulate concentration, gas temperature, droplets temperature, droplets diameter, and droplets velocity equations are obtained by using the conservation laws and solved numerically. To validate the mathematical model, necessary data was measured and collected in a commercial cement plant that uses this type of scrubbers. The effects of variation of various operating parameters on extent of reduction in removal efficiency were examined by using the model. This study confirms that in most industrial applications of Venturi scrubbers it is necessary to use a direct or an indirect cooling tower for decreasing of gas temperature before entering the Venturi.

چکیده: در این مطالعه تأثیر انتقال جرم و حرارت ناشی از تناوب دمای گاز ورودی و سیال تزریقی و میزان رطوبت اولیه گاز بر راندمان جداسازی ذرات جامد آلاینده توسط یک شوینده ونتری مورد مطالعه رفتاری و شیبی سازی قرار گرفته است. بدین منظور معادلات حاکم بر این سیستم شامل معادله اصلی تغییرات غلظت جزء آلاینده همراه گاز و سایر معادلات لازم شامل معادله تغییرات دمای گاز، دمای قطرات، سرعت قطرات، رطوبت گاز و اندماز قطرات تبیین‌و با استفاده از روش‌های عدید جهت حل‌گیری است. نتایج مدل با مقادیر اندازه‌گیری شده مربوط به عملکرد یک شوینده ونتری مورد استفاده در صنعت سیمان مقایسه گردیده و توانایی قابل قبولی در پیش بینی های عمل و این اثاره گیری‌ها مشاهده گردید. نتایج این بررسی نشان می‌دهد وجود اختلاف دما بین گاز ورودی و اب تزریقی در گل‌گازدار تا حدود زیادی راندمان جداسازی ذرات را کاهش می‌دهد که در نهایت گستجوی نشان دهنده یک کاهش سرعت نسبی بین قطرات و گاز ناشی از تبخیر (cooling effect of evaporation) است.

MMAATTHHEEMMAATTIICCAALL MMOODDEELLIINNGG AANNDD SSIIMMUULLAATTIIOONN OOFF HHEEAATT AANNDD MMAASSSS...

TTRRAANNSSFFEERR EEFFFFEECCTTSS OONN RREEMMOOVVAALL EEFFFFIICCIIEENNCCYY OOFF PPAARRTTIICCUULLAATTEE

مدلسازی ریاضی و شیبی سازی تأثیر انتقال جرم و حرارت بر راندمان

اجداسازی ذرات جامد در شوینده‌های ونتری

امیر رحیمی و اسمیش بخشی
موضوع باعث کاهش راندمان جداسازی یک قطره (Target Efficiency) شونده‌ها کاهش می‌دهد. این مسیر مشخص گردیده است که مقادیر رطوبت ورودی امکان کاهش بیش از تخمیر قطرات وجود می‌شود. این افزایش نتیجه‌گیری هر که این راندمان کاهش می‌کند. در اثر پرتوهای عمیق، شالیه گاز و رطوبت آن و افزایش قطرات آب بر میزان جداسازی و تغییرات اندازه قطرات مورد بررسی قرار گرفته است. این تجربه به نتایج این بررسی از نظر استفاده از جهت کننده گاز قبل از ورود آن به شونده و تروری جهت حصول راندمان مطلوب جداسازی مورد تایید قرار گرفت.

کلمات کلیدی: شونده و تروری، رشد قطرات، تخمیر قطرات، مدلسازی

1. مقدمه

امروز توصیف کنکره‌های جدید و بهینه‌سازی تکنیک‌های موجود در کنترل الودکی هوا به منظور همکاری گذشته و قوانین تدوین‌شده جدید که در مورد انواع الودکی را در انتخاب یا برش گردش مرد قرار می‌دهد و نسبت به گذشته از نظر تعداد، نوع یا به لحاظ دقیقه گسترش و درکی‌پذیری بانکینگ، همواره از موضوعاتی است که نقل مطلب مبنا است.

در این مقاله باعث بهینه‌سازی و شناخت بهتر شونده‌های موجود و تروری به عنوان ابزاری کارآمد کاهش کننده الودکی هوا نیز موضوع مطالعات سیاسی از محققان بوده است [1] و [2]. قابلیت جذب هم‌زمان گاز‌های گاز و ذرات جامد و اجزای محور درست یکی، شیمی‌دان، مهندسی هوا، می‌باشد. این سیستمها در مقایسه با دیگر سیستم‌های موجود می‌باشد. مراحل سیستم شیمی‌دان را برای ذرات بی‌سیار ریز، رنگین، اولویت‌پذیر، انسجام قرار در هر عرضه کم و حدود قسمت جدول، شکسته می‌شود.

قابلیت جذب هم‌زمان گاز‌های گاز و ذرات جامد کاربرد آن در صنایعی که شامل دفع سیار خروجی از آن را ندارند به شدت افزایش می‌دهد. انتظار بیانی این اندازه گیری با برای تغییرات شیبی آب و در ابتدای شیب می‌باشد، نظیره ورود دیگر، رطوبت گاز ورودی و امکان حذف ۲۹ از دیگر مقیاسی این سیستم‌ها به قدر می‌آید. به وجود حساس ذرات فاقد اختیار در مقایسه با دیگر سیستم‌های موجود و شرایط برای ذرات و مکانیک‌ها بشر دو ابزار تولیدی حاصل از معاون، سیستم‌ها به شمار می‌آید. شیمی‌دان یک شونده و تروری در شکل ۱ نشان داده شده است.
بطولی از شوینده و تروری

\[\begin{align*}
G_{C_p}^L - G_{C_p}^R = C_p E V_f \left[\frac{1.5 D^2}{D_d^3} \right] = 0
\end{align*} \]

شکل 2: 2. المان طولی مفرود از شوینده و تروری به منظور استخراج معادلات حاکم

معادلات تغییرات غلظت ذرات

با در نظر گرفتن دو روش مناسب به منظور بررسی انتقال جرم و حرارت در رادماژی ذرات جامد در شوینده و تروری مطالعات انجام شده قدمی‌تر در این حوزه علمی محقق شده است و همچنین این روش در بررسی اثر انگیز عوامل مختلف به عنوان یک روش موثر و کاربردی در بررسی این موضوع استفاده می‌شود.
۴۸

همری حجمی و اپس بخشی

حرکت گاز و نحوه قرار گرفتن شوینده، نیروهای دیگر شار ماده نیروی وزن و شار ایز ممکن است بر قیمت اعمال گردید. با این وجود با توجه به زمان مانده آن‌که در شوینده از نیروهای وزن و شار ایز مصرف گردیدن با استفاده از قانون دوم نیوتن معادلات تغییرات سرعت قطره به شکل زیر قابل بیان است:

\[
\frac{dV_d}{dx} = \frac{3\mu \left(V_d - V_c\right)}{4D_d^2 \rho_d V_d} C_{DN}
\]

(8)

به طوری که در این معادله ضریب درگ تغییر بیان شده که از \(C_{DN} \) به رابطه زیر محاسبه می‌شود:

\[
C_{DN} = C_d \frac{Re_d}{\text{N}}
\]

(9)

در طول ونتری و در نهایت محاسبه اندازه قداد خاتمه داده شده و سرعت نسبی پیش و قطرات می‌باشد.

از سویی با سایت سطح تماس سیاره‌ای گاز و ماژ عناصر از اتمایز شدن ابتدا تیزی و ایجاد قطرات ریز شدن‌های انتقال جرم و حرارت قبل از ورود به مخازنی در دمای بالای همین‌جا به‌طور مداوم بیشتر شده و باعث خواهد شد. انتقال قطرات با هر قطعه موضوع اصلی تحقیقات شده و از آن‌گونه‌ای است. هم‌چنین که برای فهم‌شدن در اغلب موارد شامل هیمالیا و نیز در شرایط دمای بالا کار کردن و در کار کردن. در این معادله زمان محاسبه را به رابطه زیر می‌تواند معروف و مشخص به رابطه زیر می‌تواند. در این عناصر معنی‌دار E (Target Efficiency) که تحت عنوان رادیوم (هدف) اندازه‌گیری تعیین را به شکل نسبت سطح دو داربند که اولی سطح مقطع داربند و دومی سطح مقطع داربند به قطر قطره می‌باشد، مشخص می‌گردد. در این مطالعه به رابطه زیر محاسبه می‌گردد.

\[
\frac{dC_p}{dx} = \frac{1.5 C_p E V_d |L_d|^2}{D_{ad}^4 V_d^2}
\]

(10)

با توجه به دقت محاسبه دمای ناشی از انتقال جرم و حرارت، معادله (9) به صورت زیر برابری می‌شود:

\[
C_p = \frac{dG}{dC_p} + \frac{dC_p}{dx} = \frac{1.5 C_p E V_d |L_d|^2}{D_{ad}^4 V_d^2}
\]

(11)

در معادله (10) راندمان جداسازی یک قطره می‌باشد که تحت عنوان رادیوم هدف محاسبه می‌شود.

\[
E = \left(\frac{K}{K_0 + 0.7}\right)^2
\]

(12)

در این معادله K پارامتر برخورد است که با معادله زیر محاسبه می‌شود:

\[
K = \frac{\rho_p D_p V_o}{9 \mu_d D_d}
\]

(13)

معادلات تغییرات سرعت قطره در شوینده‌ها و توری افزایش سرعت حرکت قطرات در جهت جریان ناشی از اعمال نیروی درگ گاز می‌باشد. بهشت به جهت
معادله تغییرات قطر قطره

تغییرات اندازه قطرات در طول شوینده و تئوری بر اساس معادله
موارد جرم قابل بیان است. اگر فشار جری جری اب در توده گاز
از فشار جری ریخته پیشتر بود، قطرات بیش از دیبل
می‌باشند. در صورتی که اگر فشار جری بر اب در
توده گاز کمتر از فشار جری ریخته پیشتر بود، قطرات بیش از
دیبل تخریب می‌شوند. بنابراین داده‌های تئوری برای توصیف
تغییرات اندازه قطره در طول شوینده و تئوری بر دست می‌آید [3].

\[
\frac{dT_d}{dx} = \frac{2K_j M_v}{\rho_d V_d} \left(P_b - P_{sat} \right)
\]

معادله تغییرات دما گاز

قطرات ایجاد شده در ابتدا گروه‌گاه به دلیل تبادل حرارت
به‌صورت مانی نشان داده شده در شکل ۱ مقدار سطح
مقطعی قطرات گاز در هر نقطه‌ای می‌توان از روابط آزاد
شده زیر محسوب نمود. باید به‌طور کلی این مقدار سطح این
دیگر جریانی قطرات در هر نقطه بر اساس دی‌ج
حجمی اولیه گاز و سطح مقطعی قطرات به راحتی قابل محسوب
خواهد بود.

\[
A = 2W(H + (x_1 - x) \tan \theta_1) \leq x_1 \\
A = 2WH \\
A = 2W(H + (x - x_2) \tan \theta_1) \geq x_2
\]

معادلات باید شکل فوق شامل معادلات مربوط به تغییرات غلظت ایندی،
در سیستم‌های باشک همواره گاز به دلیل انتقال حرارت به قطرات
و تبادل حرارت تغییر می‌یابد. بنابراین، بدین‌گونه
که سطح مقطع قطرات و دما در صورتی که دما نیز بر اساس
دیگر جریانی قطرات در هر نقطه بر اساس دی‌ج
حجمی اولیه گاز و سطح مقطعی قطرات به راحتی قابل
محسوب خواهد بود.

در سیستم‌های باشک همواره گاز به دلیل انتقال حرارت به قطرات
و تبادل حرارت تغییر می‌یابد. بنابراین، بدین‌گونه
که سطح مقطع قطرات و دما در صورتی که دما نیز بر اساس
دیگر جریانی قطرات در هر نقطه بر اساس دی‌ج
حجمی اولیه گاز و سطح مقطعی قطرات به راحتی قابل
محسوب خواهد بود.

\[
\frac{d}{dt} \left[n_i C_{pg} \left(T_g - T_d \right) \right] = -n_i \lambda d \pi d^2 \left(T_g - T_d \right) - n_d N_A M_v C_{pm} \pi d^2 \left(T_g - T_d \right)
\]

پس از از این معادلات حاکمی به وضوح رسمی دفته‌ی دمای دیگر
همتی می‌باشد برخی از پارامترهای خروجی نتایج مدل با
احتمال نگرفته‌های انجام می‌شود. به‌طور کلی نتایج مدل به
کارگاه‌های صنایع موفقیت‌ها گردید. بنابراین این انجام شده
می‌تواند با دمای مابین ۱۲۰ تا ۲۱۰ درجه سانتی‌گراد، در
می‌شود.
خطای مشاهده است. در نظر گرفتن اثرات
انتقال جرم و حرارت باعث می‌گردد راندمان جداسازی بسیار
بیشتر از مقدار در بررسی بهبود می‌دهد. باید از
این نکته برخوردار باشیم که در مواردی که
 حرارت توسط طیف‌های مختلف یا مواد مختلف
تحت فشار در حالت یکنواخت و در حالت
منجر به افزایش حرارت نشان می‌دهد.

| جدول 1. شرایط عملیاتی و مشخصات شوینده و نوتری مورد استفاده در کارخانه‌های سیمان اصفهان (1380) | |
|---|---|---|---|---|
| | طول بخش هدرایی | m | 16/54 | m³/س
| | ارتفاع گلگاه | m | 373 | دمای گاز رودی، K
| | طول بخش دولت | m | 35/6 | دمای گاز خروجی، K
| | وزن بسته گاز بوش و رودی | kg/kg | 300/24 | نسبت گاز مایع
| | وزن بسته گاز بوش دامادی | kg/m³ | 3/45 | طول گلگاه
| | وزن بسته گاز بوش دامادی | kg/m³ | 35/6 | عرض ونتری

همانگونه که به راحتی قابل مشاهده است در نظر گرفتن اثرات
انتقال جرم و حرارت باعث می‌گردد راندمان جداسازی بسیار
بیشتر از مقدار در بررسی بهبود می‌دهد. باید از
این نکته برخوردار باشیم که در مواردی که
حرارت توسط طیف‌های مختلف یا مواد مختلف
تحت فشار در حالت یکنواخت و در حالت
منجر به افزایش حرارت نشان می‌دهد.

همانگونه که به راحتی قابل مشاهده است در نظر گرفتن اثرات
انتقال جرم و حرارت باعث می‌گردد راندمان جداسازی بسیار
بیشتر از مقدار در بررسی بهبود می‌دهد. باید از
این نکته برخوردار باشیم که در مواردی که
حرارت توسط طیف‌های مختلف یا مواد مختلف
تحت فشار در حالت یکنواخت و در حالت
منجر به افزایش حرارت نشان می‌دهد.

همانگونه که به راحتی قابل مشاهده است در نظر گرفتن اثرات
انتقال جرم و حرارت باعث می‌گردد راندمان جداسازی بسیار
بیشتر از مقدار در بررسی بهبود می‌دهد. باید از
این نکته برخوردار باشیم که در مواردی که
حرارت توسط طیف‌های مختلف یا مواد مختلف
تحت فشار در حالت یکنواخت و در حالت
منجر به افزایش حرارت نشان می‌دهد.
تثبت رحسية، نظرًا لأن الدخول إلى طبول شوبنده، نائب رئيس، ضمن إين كدهم.

1. نظامان قطريلاً ينتمى إلى كتاب وثابت ينتمي إلى كتاب وثابت.

2. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

3. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

4. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

5. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

6. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

7. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

8. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

9. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

10. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

11. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

12. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

13. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

14. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

15. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

16. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

17. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

18. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

19. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

20. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

21. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

22. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

23. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

24. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

25. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

26. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

27. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

28. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

29. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.

30. نظامان قطريلاً ينتمي إلى كتاب وثابت ينتمي إلى كتاب وثابت.
شکل ۳. تغییرات رانندان جداسازی ذرات جامد در طول وحنی و مقایسه نتایج مربوط به وجود و عدم وجود پدیده‌های انتقال گرم و حرارت

شکل ۶. تغییرات دمای گاز و قطره در طول وحنی

شکل ۷. تغییرات قطر قطره در طول وحنی

شکل ۸. تغییرات قطر و ریویت در طول وحنی

شکل ۴. تغییرات هدف مربوط به یک قطره در طول وحنی و مقایسه نتایج مربوط به وجود و عدم وجود پدیده‌های انتقال گرم و حرارت

شکل ۵. تغییرات سرعت گاز و قطره در طول وحنی و مقایسه نتایج مربوط به وجود یا عدم وجود پدیده‌های انتقال گرم و حرارت
نمادها و علائم اختصاری

- m^2: مقطع عبور
- C_{DN}: ضریب درگ که به منبع گرمایی ویژه
- C_p: ضریب اتمسفر
- D_d: قطر قطر
- D_{dh}: قطر اولیه قطر
- D_{sd}: قطر متوسط اولیه قطرات
- E: راندمان جداسازی یک قطره
- F_D: نیروی درگ
- G: دی جرمی گاز
- H: نصف ارتفاع وانور
- $W / m^2 K$: ضریب انتقال حرارت بین جایی
- $W / m.K$: ضریب هدایت حرارتی
- k: ضریب حرارت و انتقال جرم
- k_{ij}: ضریب انتقال جنگل

شکل ۹
تأثیر تغییرات رطوبت گاز ورودی بر قطر قطره در طول وانور

شکل ۱۰
تأثیر تغییر میزان رطوبت گاز ورودی بر دمای گاز و قطره در طول وانور

شکل ۱۱
تأثیر تغییر قطر قطره بر دمای گاز و قطره در طول وانور

مراجع

