STUDY OF LIQUID SOLVENT DEASPHALTING OF HEAVY RESIDUES

T. Jafari Behbahani, H. Talachi & M. Taymori

Research Institute of Petroleum Industry (RIPI), Tehran, Iran, jafarit@ripi.ir

Abstract: In the 1970s, regulations in some countries forced users of heavy residue to limit pollutant emissions at industrial sites, also forced producers to upgrade their heavy products for export and domestic use. For this reason Iran as a producer, exporter and consumer has to develop new upgrading processes. The most common processes for upgrading heavy oil are catalytic processes, but existence of heavy metals, asphaltene, sulfur and nitrogen compounds in heavy oil poses several serious problems in the process. Hence at first, the unwanted materials must be lowered to the acceptable limit in the feed. Of all the techniques conceived and tested to separate asphaltene from oily feed, only one has been developed industrially, deasphalting by light solvents. In this study, deasphalting of vacuum bottom of Tehran and Arak refineries were evaluated using light alkane solvents such as n-pentane, n-heptane and L.S.R.G. (Light Straight Run Gasoline) and compared with propane deasphalting units in refineries. Results show that pentane and heptane are good solvents for asphaltene separation as well as nickel, vanadium, sulfur and nitrogen compounds but more efficient compared to propane. Finally, according to the qualitative and quantitative specification of produced DAOs using pentane, heptane and L.S.R.G. it was shown that liquid solvents are suitable feed for catalytic units (e.g. FCC) after unfinishing process.
۱. مقدمه

در سالهای ۱۹۷۰ آویزی ناشی از مصرف سوخته‌ای سنگین که منجر به انتشار ترکیبات هگونی‌های تربنز و چربی معلق می‌شود، تغییر یافته‌ی باقی‌مانده‌ای سنگین تلقی و پذیرای بهبود کیفیت و تبدیل در افراد‌ها را همراه با کاهش میزان سوخته‌ای سنگین نسبت به زمان کم می‌باشد. این تغییرات از افراد‌ها به محسوسات بسیار تر گردید. این امر منجر به ایجاد نوسایه‌ای نسبی کالیستینی در حضور هیدروژن‌های سلول‌های پروتئین و تکریک‌های بهبود باقی‌مانده‌ای سنگین گردیده‌است. نتایجی حاصل در سال ۱۹۷۸ بسیاری از تغییر‌ها را به این اثبات نمایان کرده و استفاده پیشنهاد گردید.

در صورتی که با شست‌وپاپاین بهتر نی produkت، زیرینی یاد خواهند گرفت. با وجود این حال حاضر ایران نیز با توجه به حجم قابل توجه باقی‌مانده‌ای سنگین نسبیی که در این سایر فناوری‌های این ایرانی و نیزروزی‌ها می‌باشد. بیشترین نفع از آن وابسته به تغییرات کالیستینی شناخت مناسب‌ای که جدا سایر فناوری‌های این ایرانی و نیزروزی‌ها و همچنین پیش‌بینی کافی را کنترل کرده است. همچنین با شست‌وپاپاین بهتری کیفری‌ها باقی‌مانده‌ای سنگین و محسوسات را بعنی نمایند.

۲. عوامل اثرگذار

۲.۱ فرآیند استرکخ‌زا در حال...

۲.۱.۱ اثرات خاصی بر خواص و درجه حرارت...
بررسی استخراج آسیفتان، از باقیمانده های سنتی نفتی با استفاده از حل‌الهای مایع

فلزات، گاز و نیتروزن روغن استحصالی آزایش می‌یابد در عوض شاخ و بیشترین و دانسیتی API کاهش می‌یابد در صورته نسبت حلال به خوراک نتیجه به آبی در آن بازیابی، گاز و نیتروزن استخراج شدید، بیشترین و بیشترین آزایش می‌یابد در صورته نسبت حلال به خوراک نتیجه به آبی در آن بازیابی، گاز و نیتروزن

کاهش و گرایش API و شاخ و بیشترین استخراج آسیفتان، از باقیمانده های سنتی نفتی

![diagram](image-url)

شکل 1. دسته‌بندی فرآیندهای مختلف به‌همراه کیفیت باقیمانده های سنتی نفتی

شکل 2. میزان حل‌الهای باقیمانده های سنتی در حل‌الهای هیدروکراتیک

تاثیر فشار

با استخراج فشار داشته‌ای، حل (یک عضو حل‌الهای سبک مثل پروپان) و در نتیجه میزان روغن حاوی گاز استخراج یافته و کیفیت آن کاهش می‌یابد [2].

در شکل 2 میزان حل‌الهای باقیمانده های سنتی در حل‌الهای هیدروکراتیک
3. خرواخ

تعد مادة في اسلوب بلاكشاغيا تهان وارد في اين تحقيق مورد استنتاج قرار مغريد اين ذو مخصصة انا انا في جدول 1 خلاصة هذه استنتاج

1- حلال

بوريون من سبعا بشح حلال مناسب جهت أسفلانيين زداني في واحة بروف سازا بودا كارهار تطيفات زياده في مورد ل ان ايجاد أذن أستانتش و تشاديه فيها ايجاد مصول حصول مادة من قرانتي استنتاج حلال بوريون جهت راحة واحة بروف سازا مناسب استنتاج قرار. تا بينه بثري الكبادم له السيفي ب في فورنويل الذي سك حا هو ايجاد استنتاج برف قريين أسفلانيين زداني ذه جهت خرواخ مناسب بريحان واحة깅رساني نسبة تا جدول من الذي سك حا هو ايجاد استنتاج برف قريين أسفلانيين

3- ديوان

خواهيد بروف آجل من نظر اقتصادي وعمل جبران فكتور چندنیتی ماشين 17. نتایج

2- De Asphalted Oil

1- Mixer settler
جدول 1. مشخصات نانه بر جه تقطیع در خلاء پالایشگاه‌های تهران و اراک

<table>
<thead>
<tr>
<th>روش استاندارد</th>
<th>پالایشگاه اراک</th>
<th>نانه تهران</th>
<th>مشخصات</th>
</tr>
</thead>
<tbody>
<tr>
<td>[11] ASTM-D4052</td>
<td>100</td>
<td>100</td>
<td>چگالی در °C 15/56 (wt%)</td>
</tr>
<tr>
<td>[12] ASTM-D189</td>
<td>400</td>
<td>400</td>
<td>کربن بالاییماده (wt%)</td>
</tr>
<tr>
<td>[13] ASTM-D445</td>
<td>340</td>
<td>340</td>
<td>نسبت تورزور در °C 100 (cSt) 10/65 (wt%)</td>
</tr>
<tr>
<td>[14] IP-143</td>
<td>630</td>
<td>630</td>
<td>کربن بالاییماده (wt%)</td>
</tr>
<tr>
<td>[15] ASTM-D2622</td>
<td>430</td>
<td>430</td>
<td>نسبت تورزور در °C 100 (cSt) 10/65 (wt%)</td>
</tr>
<tr>
<td>[16] UOP 800</td>
<td>160</td>
<td>160</td>
<td>تکل (ppm)</td>
</tr>
<tr>
<td>[17] UOP 800</td>
<td>530</td>
<td>530</td>
<td>ناندیم (ppm)</td>
</tr>
<tr>
<td>[18] ASTM-D3228</td>
<td>1200</td>
<td>1200</td>
<td>تکل (ppm)</td>
</tr>
<tr>
<td>[19] ASTM-D3228</td>
<td>1200</td>
<td>1200</td>
<td>ناندیم (ppm)</td>
</tr>
</tbody>
</table>

جدول 2. مشخصات محصول روغن بدست آمده از نانه بر جه تقطیع در خلاء پالایشگاه تهران

<table>
<thead>
<tr>
<th>روش استاندارد</th>
<th>خلاء</th>
<th>پنتان</th>
<th>پرن</th>
<th>مشخصات</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.S.R.G.</td>
<td></td>
<td></td>
<td></td>
<td>مردان روغن حاصله (wt%)</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>85</td>
<td>44</td>
<td>میزان روغن حاصله (wt%)</td>
</tr>
<tr>
<td>ASTM-D4052</td>
<td>72</td>
<td>100</td>
<td>72</td>
<td>چگالی در °C 15/56 (cSt)</td>
</tr>
<tr>
<td>ASTM-D189</td>
<td>63</td>
<td>88</td>
<td>63</td>
<td>کربن بالاییماده (wt%)</td>
</tr>
<tr>
<td>ASTM-D445</td>
<td>119</td>
<td>115</td>
<td>119</td>
<td>نسبت تورزور در °C 100 (cSt) 10/65 (wt%)</td>
</tr>
<tr>
<td>IP-143</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>کربن بالاییماده (wt%)</td>
</tr>
<tr>
<td>ASTM-D2622</td>
<td>158</td>
<td>158</td>
<td>158</td>
<td>نسبت تورزور در °C 100 (cSt) 10/65 (wt%)</td>
</tr>
<tr>
<td>UOP 800</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>تکل (ppm)</td>
</tr>
<tr>
<td>UOP 800</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>ناندیم (ppm)</td>
</tr>
<tr>
<td>ASTM-D3228</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>تکل (ppm)</td>
</tr>
<tr>
<td>ASTM-D3228</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>ناندیم (ppm)</td>
</tr>
</tbody>
</table>

جدول 3. مشخصات روغن بدست آمده از نانه بر جه تقطیع در خلاء پالایشگاه اراک

<table>
<thead>
<tr>
<th>روش استاندارد</th>
<th>خلاء</th>
<th>پنتان</th>
<th>پرن</th>
<th>مشخصات</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.S.R.G.</td>
<td></td>
<td></td>
<td></td>
<td>مردان روغن حاصله (wt%)</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>87</td>
<td>87</td>
<td>میزان روغن حاصله (wt%)</td>
</tr>
<tr>
<td>ASTM-D4052</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>چگالی در °C 15/56 (cSt)</td>
</tr>
<tr>
<td>ASTM-D189</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>کربن بالاییماده (wt%)</td>
</tr>
<tr>
<td>ASTM-D445</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>نسبت تورزور در °C 100 (cSt) 10/65 (wt%)</td>
</tr>
<tr>
<td>IP-143</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>کربن بالاییماده (wt%)</td>
</tr>
<tr>
<td>ASTM-D2622</td>
<td>158</td>
<td>158</td>
<td>158</td>
<td>نسبت تورزور در °C 100 (cSt) 10/65 (wt%)</td>
</tr>
<tr>
<td>UOP 800</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>تکل (ppm)</td>
</tr>
<tr>
<td>UOP 800</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>ناندیم (ppm)</td>
</tr>
<tr>
<td>ASTM-D3228</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>تکل (ppm)</td>
</tr>
<tr>
<td>ASTM-D3228</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>ناندیم (ppm)</td>
</tr>
</tbody>
</table>

L.S.R.G. 4. مشخصات رزین استحصالی از روغن حاصله از عملیات استخراج آسفالتین توسط خلال خلاء از نانه بر جه تقطیع در خلاء پالایشگاه تهران

<table>
<thead>
<tr>
<th>زین</th>
<th>روغن</th>
<th>مشخصات</th>
</tr>
</thead>
<tbody>
<tr>
<td>36/6</td>
<td>45/4</td>
<td>راهنمان نتیجه (wt%)</td>
</tr>
<tr>
<td>45/6</td>
<td>21/1</td>
<td>کربن بالاییماده (wt%)</td>
</tr>
<tr>
<td>55/6</td>
<td>5/5</td>
<td>آسفالتین (wt%)</td>
</tr>
</tbody>
</table>
۵. نتایج گیری

۱. رادمان تولید محصول رهگیر در فرانسه آسفلتین‌های زایمی توسط حلال‌های درون مایع بیشتر از حلال‌های خارجی است. رادمان متوسط حلال داخل باره‌های دو مراحل مورد استفاده دAO تولید در حدود ۸۴ درصد از که در مقایسه با حلالهای دوی بیشتر است. در ۴۷ درصد هر دوی نیمه از آسفلتین‌های درون جایگزین بوده است. حالا با رون حلال داخلی در فرانسه اول حمل مواد زنی توسط فرآیندهای مورد پیوستن از حلال‌های خوب قرار می‌شود باید که در دوره پیوستن این اتفاق نمی‌افتد. نکته ۳۲.

۲. همان‌گونه که در جدول نتایج مشاهده شده است، حلال‌های موردین در حلال‌های موردین را در حلال‌های خوب قرار می‌شود باید که در دوره پیوستن این اتفاق نمی‌افتد. نکته ۳۲.

۳. در فرآیندهای رهگیر سنگین محصول رهگیر حلال‌های خوب از آسفلتین‌های زایمی در حلال‌های خوب قرار می‌شود باید که در دوره پیوستن این اتفاق نمی‌افتد. نکته ۳۲.

۴. با استفاده از F.C.C. استخراج با حلال مایع می‌توان زینت ها را نیز از آسفلتین‌های سنگین جدا نمود. برای تجزیه و عاید که در این مرحله هوازی قرار گرفت و کل زنی ها ناشناخته بود. در مرحله دوم حلال داخل باره‌های دوی نیمه قرار که در بازی آسفلتین‌های خوب قرار می‌شود باید که در دوره پیوستن این اتفاق نمی‌افتد. نکته ۳۲.

۵. رادمان در اسفلتین‌های زایمی به ویژه از Approach بررسی نشان داده و وجود علم به تولید و ارائه می‌شود. نکته ۳۲.

مراجع

