IMMOBILIZATION OF DESULFURIZATION BACTERIA ON SUITABLE BASE AND OPTIMIZATION THE CONDITIONS

M. Zarkesh; M. Mashayekhi; M. Akbarnejad; Gh. Mohebali; B. Rasekh; A. Keytash

Abstract: Biodesulfurization of oil component is an important biological attraction of the oil industry. Researches and studies in this area are going on to reach to the industrial scale. On this way, there are so many problems which can be solved by proper research. In current article, the aim is creating desirable technical knowledge for a special bacteria immobilization our studies around this subject proved that this method is very useful. Immobilization process has been performed successfully and the desirable support (calcium alginate) was selected. As the second step the concentration of calcium chloride and Na-alginante was optimized (0.05 mol for the first and 700 mlg for the second) optimization steps was complete through the factorial method. In the last step through the same methods we could prove that our immobilized bacteria is renewable and can be recovered for using in another desulfurization experiment.

Tثپیثت باكتراً گوگردزدا در پایه مناسب و بهینه سازی شرایط آن

مهمشید زرکش، مریم مشایخی، محمدمهدی اکبرنژاد، قاسمعلی محیعی، بهنام راسخ و اشک کيتاش

چکیده: حذف بیولوژیکی گوگرد از ترکیبات تفتی یکی از جاذبه‌های مهیم بیوتکنولوژی در صنعت نفت می‌باشد. در ادامه تحقیقات در این زمینه بهتر صنعتی شدن مطرح است. در این راستا مشکلاتی وجود دارد که امید است انجام پژوهش‌های مختلف بیشتری را مرتفع نمود. در این تحقیق سعی بر اجاد دانش فنی تثبیت این باکتری و مطالعه سودمندی این روش در جهت صنعتی شدن بوده است. در تحقیق حاضر به طور موفقیت‌آمیز فردی تثبیت انجام گردیده و پایه مناسب ان به عنی کلسیم آلزینت شهرت داشت. در مرحله دوم تلاش در جهت بهینه سازی شرایط تثبیت باکتری انجام گردیده است که نهایتاً به نیاز مناسب غلظت کلسیم کلرید و سدیم آلزینت به ترتیب پربر 0.5 مول و 700 میلی گرم دست یافتند. شد انجام مراحل بهینه سازی با روش فاکتوریال کامل بوده است. در ضمن در مرحله آخر تحقیق بررسی امکان
استفاده مجدد از باکتری تنیث شده با همان آزمایشات بهینه‌سازی انجام گردید. این مرحله منشأ‌شده که امکان کاربرد مجدد باکتری تنیث شده است و می‌توان آن از محيط فرانیدی شده، جدا گردد و مجدد در محيط سولفوروزایی شده وارد کرده.

واژه‌های کلیدی: گودکرزی بیولوژیکی، تنیث، باکتری، کلسم آژین‌های بهینه‌سازی، اکسی‌سولفور، Zر-بل هم‌سوختگی قشلای حاوی ترکیبات گودکرزی می‌باشد. وجود این ترکیبات در نفت خام و سیاب سوختها در ادامه فرانیده‌پالایش سبب ایجاد گاز H2S بوده که از آدامه کندن های فضای می‌باشد، گردیده است[۲۰۲۱]. همچنین وجود مکانیسم‌ها در محصولات پلاستیک از جمله گازوئیل، نفت سیف و نفت کرون در هنگام احتراق در موتر و بر در کوره‌ها و تولید گازهای SO2 و H2S به شکل مشخص درودی نخواهد شد.

1. مقدمه

همه سوخته‌ای قشلای حاوی ترکیبات گودکرزی می‌باشد. وجود این ترکیبات در نفت خام و سیاب سوختها در ادامه فرانیده‌پالایش سبب ایجاد گاز H2S بوده که از آدامه کندن های فضای می‌باشد، گردیده است[۲۰۲۱]. همچنین وجود مکانیسم‌ها در محصولات پلاستیک از جمله گازوئیل، نفت سیف و نفت کرون در هنگام احتراق در موتر و بر در کوره‌ها و تولید گازهای SO2 و H2S به شکل مشخص درودی نخواهد شد.

1.1. ساختار آکسیده‌ای گودکرزی در محیط زیست برابری اینش با ساختار نظر به این‌که برای انجام این عمل به‌طور مشابه در نتایب با محیط‌های مختلف باکتری‌ها ترقی می‌بیند.

شیمی‌دانان از این نتیجه نتیجه‌گیری می‌کنند که به‌طور مشابه باکتری‌ها در محیط‌های مختلف می‌توانند ترقی می‌بیند.

1.2. گیپرگ ساختار

برای انجام آزمایشات از گیپرگ ساختار مورد استفاده قرار گرفته است. برای انجام این آزمایشات گیپرگ ساختار مورد استفاده قرار گرفته است. برای انجام این آزمایشات گیپرگ ساختار مورد استفاده قرار گرفته است. برای انجام این آزمایشات گیپرگ ساختار مورد استفاده قرار گرفته است. برای انجام این آزمایشات گیپرگ ساختار مورد استفاده قرار گرفته است. برای انجام این آزمایشات گیپرگ ساختار مورد استفاده قرار گرفته است. برای انجام این آزمایشات گیپرگ ساختار مورد استفاده قرار گرفته است.
3. روشهای تبیین

3.1. روشهای تبیین بر روی دانهای شیشه ای به‌طور گروهی مدل کراید (HF) و در حال‌های ناهمواری شده، 2 میلی لتر فلوئورید در دارای سلول نامور از میکرو‌سیستم برای دی اکسید سولیک مدل کراید با محدوده اندازه‌گیری شده است.

3.2. مواد شیمیایی

2-1. ماده DBT (DBT) و نیترس هئژدakan، کلسیم کلرید (CaCl2) و ماده HBP (ZHEP) از شرکت Merck خریداری شده و به قیمت ماده فشار استفاده می‌شود.

دسترس و در حد انتقالی بوده که از شرکت‌های مختلف خریداری شده است.

3.3. جدول 1. ترکیبات محیطی کشت مورد استفاده برای رشد باکتری

<table>
<thead>
<tr>
<th>ردیف</th>
<th>مواد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KH2PO4</td>
<td>6 g</td>
</tr>
<tr>
<td>2</td>
<td>NaH2PO4</td>
<td>4 g</td>
</tr>
<tr>
<td>3</td>
<td>NH4NO3</td>
<td>1.2 g</td>
</tr>
<tr>
<td>4</td>
<td>Sodium benzoate</td>
<td>2 g</td>
</tr>
<tr>
<td>5</td>
<td>MgCl2.6H2O</td>
<td>0.75 g</td>
</tr>
<tr>
<td>6</td>
<td>MnCl2.4H2O</td>
<td>0.004 g</td>
</tr>
<tr>
<td>7</td>
<td>CaCl2.2H2O</td>
<td>0.001 g</td>
</tr>
<tr>
<td>8</td>
<td>FeCl3</td>
<td>0.001 g</td>
</tr>
<tr>
<td>9</td>
<td>Deionized water</td>
<td>1000 ml</td>
</tr>
</tbody>
</table>

3.4. تصویر 1. تصویر‌های انتقال میکروسکوپی الکترونی 360 Cambridge model

3.5. تصویر 2. نشان دهنده گزینه وزن شناختی

3.6. روش اندازه‌گیری وزن شناختی

برای اندازه‌گیری وزن شناختی از دستگاه الکترون‌بندی با طول موج 660 nm استفاده شد. به این صورت که ابتدا مواد مخلوط همانند مشخص در جدول 2-1 مخلوط می‌شود و به شکل شیشه ای می‌گردد. این مخلوط به سوخته شدن 24 ساعت در محیط مدل کراید در محیط مدل کراید خوراکی می‌گردد.

3.7. تبیین باکتری گوگردگرها در پایه مناسب و بهینه سازی شرایط آن

10 دقیقه سانتریفیوژ می‌گردد و در هر 10 دقیقه مدل کراید می‌گردد.
4. تحقیق تاثیر یک میلی‌لیتر HPLC-DBT در راهان‌سازی تنش‌زا تمرینات کودکان

در این تحقیق تنش‌زا تمرینات کودکان یک میلی‌لیتر HPLC-DBT در راهان‌سازی تنش‌زا تمرینات کودکان بر روی این روش تحقیق هدف گردید. علی‌رغم نتایج هنگام یک میلی‌لیتر HPLC-DBT در راهان‌سازی تنش‌زا تمرینات کودکان خاصی نشان نشان نبوده منجر به تحقیق تنش‌زا تمرینات کودکان خاصی نشان نبوده منجر به تحقیق تنش‌за
تنبیه باکتری گوگردزدای در پایه مناسب و بهینه سازی شرایط آن

به این ترتیب تنبیه گردید. همچنین با تنبیه باکتری در زلایی کلیسه آزمایشات، آگار و سل زل تنابیج به صورت نمونه شکل 4

بست امید

با توجه به این نمودار مشخص می‌گردد که پایه کلیسه آزمایشات تنبیه به دو گروه فعالیت به‌خیال را فرا خوان کرده است. زیرا درصد حفظ فعالیت تنبیه به سلول آزاد در پایه‌های سل-زل کلیسه آزمایشات و آگار به ترتیب 125 و 175 درصد بوده است. با توجه به این نتایج پایه کلیسه آزمایشات مانند تنظیم تنبیه پایه و انتحاب گردید. علاوه بر این پایه کلیسه آزمایشات به علت مقاومت و استحکام بیشتر مکانیکی برای امر تنبیه مناسبتر است.

شکل 5: نمودار اثرات عضله فاکتورهای مورد آزمایش

جدول 2. میزان فعالیت ویژه بیوتکالیپسی در دو مرحله استفاده در هیبرید مدل (gmo/HBP/Kgdry cell weight hr)

<table>
<thead>
<tr>
<th>شماره</th>
<th>میزان فعالیت در مرحله</th>
<th>کلیسه</th>
<th>میزان فعالیت در مرحله</th>
<th>کلیسه</th>
<th>میزان فعالیت در مرحله</th>
<th>کلیسه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>498</td>
<td>1</td>
<td>250</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>520</td>
<td>1</td>
<td>250</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>498</td>
<td>1</td>
<td>250</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>520</td>
<td>1</td>
<td>250</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>498</td>
<td>1</td>
<td>250</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>520</td>
<td>1</td>
<td>250</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>498</td>
<td>1</td>
<td>250</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>520</td>
<td>1</td>
<td>250</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
</tbody>
</table>

جدول 3. جدول طراحی آزمایشات با مقدار سطوح هر فاکتور

<table>
<thead>
<tr>
<th>شماره</th>
<th>مقدار سلول آزمایش (میلی گرم)</th>
<th>فراگیر</th>
<th>مقدار سلول آزمایش (میلی گرم)</th>
<th>فراگیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>498</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>520</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>498</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>520</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>498</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>520</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>498</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>520</td>
<td>1</td>
<td>250</td>
<td>1</td>
</tr>
</tbody>
</table>

پس از محاسبات آماری معادله‌ای که تغییرات این متغیرها از آن پیروی می‌کند بسته امید و بر اساس آن مختصی‌های کنترل برای آنها رسید گردید (شکل 6). با توجه به این نمودار و محاسبات، نطقه بهینه در سطح 0.01 برای فاکتور کلیسه در سه مول (0.01 بست امید) و پاسخ پیش‌بینی شده برای این نقطه 175 میکرو مول خیبردکسی یک تولید هدف رو به ایزومتر گزین خیک سلول در یک ساعت محاسبه شده است که با پاسخ آزمایشات تالید برای این نتایج در نهایت هم مشخص شده اگر این آزمایشات محدود از باکتری تنابیج شده برای آزمایشات 1 تا 8 مدون بیوتکالیپسی در مجاهر محیط مدل گیاهی به‌دست آمده دیگر قرار گرفت. نتایج فعالیت بیوتکالیپسی در این آزمایشات در جدول 4 ذکر شده و مقایسه نتایج آنها در شکل 7 نشان داده شده است.

رز پس از انتخاب پایه مناسب برای تنابیج باکتری گوگردزدای 22 و سلول‌های که در انگیم این عمل مورت بودند تعیین گردید. این عملکردی که در ساخت پایه مورت هستند عبارت از ساخت سلول، غلظت کلیسه کلراید و مقدار سدیم آزمایشات مصرفی در ساخت پایه-
ازمایشگاهی و نیمه صنعتی کاتالیست‌که در انجام این تحقیقات، را نیاز به گرفتن، تشریح و قدردانی می‌نماییم.

بررسی‌ها

![شکل ۶. نمودار مقایسه میزان فعالیت باکتری تئیب شده در دو مرحله عملیات](image-url)

تشکر و قدردانی
از همکاری صمیمانه افغان مهندس حمید بیاد ریاست متحضر یک مهندس واکنش‌کاتالیستی، سید وحید صمیمی از اهدajar دانشجوی دکتری و همچنین حمیدرضا حاجی‌زاده از واحدها ساخت و همکاری.
