AN INVESTIGATION ON THE IMPROVEMENT OF ZINC EXTRACTION FROM SILICEOUS CONCENTRATES

H. Atashy
Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
h.ateshy@hamoon.usb.ac.ir

J. Rahnama-Rad
Faculty of basic sciences, Islamic Azad University, Zahedan Branch, Zahedan, I.R. Iran

M. Fallahnejad
Faculty of engineering sciences, Sistan & Baluchestan University, Zahedan, I.R. Iran

Abstract: Inhibiting of gel forming, under certain pH and temperature conditions, is one of the most effective ways in leaching process of siliceous zinc concentrates. In order to provide the crucial conditions for extracting zinc from siliceous zinc concentrates, the variables, e.g. temperature, pH, time duration, rotation speed of mixer and the remaining time which are known to affect the leaching process efficiency have been optimized. Experimental results indicate that the decreasing pH to close one, keeping solution temperature near boiling-point, mixing speed close to 200 rpm and the time duration of each period to be 180 minutes, optimizes the efficiency. Furthermore, to inhibit gel forming and super saturation which decreases efficiency, extraction time should be decreased. Due to gradual pH increase in the second stage of the experiments, impurities will not be dissolved and hence their omission will be more effective.

پیشنهادی سازی راندمان استخراج رويی از کنسانترهای حاوی سیلیس

حسین آتشی، جعفر رهنما و و مهدی فلاح نژاد

چکیده: جلوگیری از تشکیل زل در عملیات لیجنگ کنسانترهای حاوی سیلیکات رويی، در دما و pH مطلوب، یکی از مسئولین روش‌های استخراج هیدرومترالورژیکی می‌باشد. به منظور ایجاد شرایط مورد نیاز برای استخراج روی از ترکیباتی که حاوی سیلیس و فریت روی می‌باشد، منگری‌هایی مؤثر بر راندمان لیجنگ، اعیان دما، زمان، دوره‌های و زمان توقف دو مرحله بهینه شدن. نتایج این تحقیق نشان می‌دهد که برای لیجنگ بهترین pH تا مقدار یک حفظ دما محلول حاکم جوش دور هرمز با 200 بر دقیقه و زمان هر مره می‌باشد 180 دقیقه. ضرورت است. همچنین برای مومنت از تشکیل زل و شرایط فوق ایجاد یابا تا سرحد امکان مدت زمان استخراج را حفظ راندمان کاشش داد. افزایش pH در مراحل دوم آزمایش موجب عدم احتمال انحلال ناخالصی‌ها و در نتیجه حذف بهتر آنها می‌گردد.

واژه‌های کلیدی: استخراج رویی، پیشنهادی، سیلیکا، فریت رویی، لیجنگ

1. مقدمه

کاتی‌های مورد استفاده در تولید روی به دو دسته کلی سولفوریک و اسیده تهیه می‌شوند و عبارتند از: اسیده (ZnS) مارتینیت، مولتیت و اسیده (Zn,Fe)S هیدروسولفاتیت، هیدروسولفاتیت Zn4[(OH)2Si2O7].H2O، و اسیده سولفوریک Zn2[SiO4]2، و اسیده سولفوریک Zn5[(OH)3]CO3.2

سبکه‌ساده این کاتی‌ها به طور مستقیم استخراج نشده و همیشه بک مخلوط بخت (نشوبه) را پشت سر می‌گذارند. محصولات حاصله بر این عبارتند از: اکسید رویی، فریت رویی، سیلیکات‌های رویی و کسی سولفات‌های رویی، اکسید آه یا دیگر موادی که کلسیم خونه‌ی می‌شوند: 1.2. اکسید رویی به آسانی در اسید سولفوریک حل می‌شود اما فریت رویی فقط در اسید سولفوریک ترمیم و غلیط قابل انحلال است.

 investigación en la mejoría del extracción de zinc de concentrados silíceos

H. Atashy
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Sistán y Baluchestán, Zahedan, Iran
h.ateshy@hamoon.usb.ac.ir

J. Rahnama-Rad
Facultad de Ciencias Básicas, Universidad Azad de Zahedan, Zahedan, Irán

M. Fallahnejad
Facultad de Ingeniería Química, Universidad de Sistán y Baluchestán, Zahedan, Irán

Resumen: Inhibir la formación de gel, bajo ciertas condiciones de pH y temperatura, es uno de los métodos más eficaces para el proceso de leaching de concentrados de zinc silíceos. Para proporcionar las condiciones cruciales para extraer zinc de concentrados de zinc silíceos, se consideran variables como, por ejemplo, temperatura, pH, duración del tiempo, velocidad de mezcla y el tiempo restante, que afectan la eficiencia del proceso de leaching. Los resultados experimentales indican que la disminución del pH hasta cercano a uno, manteniendo la temperatura de solución cerca del punto de ebullición, la velocidad de mezcla cercana a 200 rpm y la duración del tiempo de cada periodo a 180 minutos, optimiza la eficiencia. Además, para evitar la formación de gel y la super saturación que reduce la eficiencia, se debe disminuir el tiempo de extracción. Debido a la gradual incremento del pH en la etapa segura de los experimentos, los impurezas no se disolverán y, por lo tanto, su exclusión será más efectiva.

Palabras clave: Extracción de zinc, propuesta, sílice, depósito de zinc, leaching
حسب آنثه جعفر رهنماز و مهدی فلاح نژاد

2. روش تحقیق

2-1. مواد

برای اجرا از آزمایشگاه‌های محیط زیست و سیستم‌های محیطی استفاده شد. نمونه‌های آزمایشگاه مربوط به معدن‌های مختلفی شامل موادی مانند CaO (الکالین), MgO (الکالین) و ZnO (آژیون) بودند.

2-2. آزمایشات

در این گزارش به چهار نوع از سیلیکات‌های مورد استفاده برای اجرای آزمایشات استفاده شد. این سیلیکات‌ها شامل سیلیکات‌های آلیک، سیلیکات‌های آلیک و سیلیکات‌های آلیک بودند. هر چند، سیلیکات‌های آلیک بیشتر در اینجا بررسی شدند.

جدول 1. آنالیز شیمیایی نمونه‌ها

<table>
<thead>
<tr>
<th>نوع آکسید</th>
<th>شماره</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>5/13</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>2/11</td>
<td></td>
</tr>
<tr>
<td>ZnFe2O4</td>
<td>7/12</td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>5/1</td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>4/4</td>
<td></td>
</tr>
</tbody>
</table>

وارد و مخلوط در درمانی مختلط 30-105 درجه سیلیکات به برای رسوب به Ca(OH)2 مقدار 3 ساعت همزمان و مواد توسط pH هایی که در پلاکده و سیستم‌های مختلفی انجام شده و در pH هایی که در این مورد انجام شده شدن ممکن است. همگنی pH در محلول مصرفی محاسبه و خنثی کردن به طور فیزیولوژیکی توسط میکروب‌ها انجام می‌شود. برای تحقیقاتی که نتایج آن در این مقاله آمده، مصالح به‌طور کلی، سیلیکات‌های آلیک که به سیستم مولفهای زیادی انتشار پایه آنها و

ZnFe2O4 (آژیون) در دمای 30-35 درجه سیلیکات به طور فیزیولوژیکی محاسبه و خنثی کردن به طور فیزیولوژیکی توسط میکروب‌ها انجام می‌شود. برای تحقیقاتی که نتایج آن در این مقاله آمده، مصالح به‌طور کلی، سیلیکات‌های آلیک که به سیستم مولفهای زیادی انتشار پایه آنها و

pH

44-40

44-40
یافته گردید و لازم است برای این هدف سوالات روزانه داشته باشیم لازم است که محلول اسید، خشک گردد. برای انجام این کار به ترتیب یک محلول، آتش گرفته شد. سپس زمان افزودن آتش بی‌پایان به pH 4/5 رسیده شد. در هنگامی که pH از 7/5 تا 7/8 تغییر نکند، یک محلول الکلی را به تازه کنندهٔ باقیماندهٔ محلول اضافه کنیم.

یکی از عوامل مهم است که استفاده توانان به خصوص اهمیت داشته باشد. شایسته است که این عمل در زمان‌های مختلف و در صورت تغییر pH به‌صورت دیگر، قابلیت‌های واکنش‌هایی را نیز داشته باشد. افزودن تغییر pH اسید یا سوپ در این روش نیز می‌تواند به‌صورت کامل و این چنین در صورت نیاز به‌طور کامل است. این امر باعث می‌شود تا این اینکه یک محلول الکلی به‌صورت کامل به‌صورت گرفته شود. در این بخش، ملاحظه شده است که در هنگام آماده‌سازی محلول الکلی، تغییر pH به‌صورت گرفته شده و در این صورت، محلول الکلی به‌صورت کامل به‌صورت گرفته شود.

شکل 1: نتایج حاصل از آزمایش‌های سری‌الاف و ب بر روی نمونه اول

شکل 2: نتایج حاصل از آزمایش‌های سری‌الج و د بر روی نمونه دوم
جدول ۲ عوامل موثر بر راندمان استخراج روی (نموده اول) زمان توقف بین دو مرحله ۳۰ دقیقه می‌باشد (T_M = 30 min)

<table>
<thead>
<tr>
<th>مرحله اول</th>
<th>pH</th>
<th>دما (OC)</th>
<th>T1 (min)</th>
<th>دور همزن</th>
<th>pH</th>
<th>دما (OC)</th>
<th>T2 (min)</th>
<th>سرعت فیلتر اسیون (1/m²min)</th>
<th>راندمان (%)</th>
<th>شماره آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/3</td>
<td>240</td>
<td>50</td>
<td>150</td>
<td>3/3</td>
<td>240</td>
<td>50</td>
<td>210</td>
<td>5/7</td>
<td>3/3</td>
<td>3/3</td>
</tr>
<tr>
<td>3/3</td>
<td>240</td>
<td>80</td>
<td>210</td>
<td>3/3</td>
<td>240</td>
<td>80</td>
<td>270</td>
<td>7/3</td>
<td>3/3</td>
<td>3/3</td>
</tr>
</tbody>
</table>

حسین آتشی، جعفر رهمناردو و مهدی فلاح نژاد
ادامه جدول ۲. عوامل مؤثر بر راندمان استخراج روی (نمونه اول)، زمان توقف بین دو مرحله ۲۰ دقیقه می‌باشد
(T\(_{\text{M}}\) = ۳۰ دقیقه)

<table>
<thead>
<tr>
<th>مرحله اول</th>
<th>مرحله دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>دما (°C)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>۳۰</td>
</tr>
<tr>
<td>۲</td>
<td>۳۰</td>
</tr>
<tr>
<td>۳</td>
<td>۳۰</td>
</tr>
<tr>
<td>۳</td>
<td>۳۰</td>
</tr>
<tr>
<td>۲</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>۲</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>۲</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>ۡ</td>
<td>۳۰</td>
</tr>
</tbody>
</table>

آمایش‌های سری ۲۰-۱۳: آمایش‌های سری ب در روی نمونه اول در دمای جوش

آمایش‌های سری ب در روی کسانتوره نمونه اول مشابه آمایش‌های سری A انجام شدند، ولی با این تفاوت که آنها در طی یک مرحله و بدون زمان‌دهی سی دقیقه‌ای انجام و مخلوط کسانتوره به دمای تنظیم‌شده جوش، یعنی دمای ۹۵-۱۰۰ درجه سلسیوس ساده‌تر بود.

سپس برای کاهش pH، اسد سولفوریک و برای افزایش آن، ابتدا به مخلوط افزوده و همچنین دمای محلول در تنظیم‌شده جوش آن تحت حفظ شد. این نوع آمایش نیز چندین بار تکرار شده و نتایج آن جدول ۱ (آمایش‌های سری B) نشان داده شده است.

آمایش‌های سری ۲۰-۱۴: این سری آزمایش‌های از دمای جوش در دمای محيط

این ۵۰ گرم کسانتوره از نمونه اول در اسید سولفوریک ۹۶ گرم در لیتر در دمای محيط حل شد. افزودن اسید به محلول به طور مداوم و در طی سه ساعت (۱) و همراه با همزمان دو گرد و سپس از (۱) به محلول به دمای pH رسیدن به مقداری مساوی ۳ محلول به دمای ۳۰ دقیقه این حفظ شد. در مرحله دوم، بالا بسته اذده از مرحله قابل، با افزودن ترکیب محلول آب همک غلاف محصول زمان ۳ ساعت با pH = ۵ به دست آمده بعد از ۵ دقیقه برای جداسازی کیک آن، فیلتر شد. این نوع آمایش نیز چندین بار تکرار شد که نتایج آن در شکل ۱ (آمایش‌های سری C) نشان داده شده است.
جدول ۳. عوامل مؤثر بر راندمان استخراج، روي نمونه اول در دمای نقطه جوش

<table>
<thead>
<tr>
<th>مرحله دوم</th>
<th>pH</th>
<th>دما (°C)</th>
<th>t1 (min)</th>
<th>دور هنیم (rpm)</th>
<th>زمان توقف بین pH (min)</th>
<th>سرعت فیلتراسیون (l/m2min)</th>
<th>راندمان</th>
<th>شماره آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۵</td>
<td>۱۵۰</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۹۵</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>۵</td>
<td>۱۵۰</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۹۵</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۳</td>
</tr>
<tr>
<td>۳</td>
<td>۵</td>
<td>۱۵۰</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۹۵</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۵</td>
</tr>
<tr>
<td>۴</td>
<td>۵</td>
<td>۱۵۰</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۹۵</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۹</td>
</tr>
</tbody>
</table>

۳-۱- بررسی اثر دور هنیم
برای بررسی اثر دور هنیم آزمایش‌هایی صورت گرفت. نتایج حاصل در جدول (۴) نشان داده شده است. مشاهده می‌گردد که با افزایش دور هنیم سرعت فیلتراسیون و میزان حلولی تا حدودی افزایش یافت. است.

جدول ۴. مقایسه نتایج حاصل از آزمایشات

<table>
<thead>
<tr>
<th>راندمان لیج (%)</th>
<th>رطوبت کیک (%)</th>
<th>نسبت وزنی کیک مرطوب به کنسانتره</th>
<th>سرعت فیلتراسیون (l/m2min)</th>
<th>سری آزمایش ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۰</td>
<td>۵۹/۳۱</td>
<td>۲۷/۵۳</td>
<td>۱۲/۹۰</td>
<td>ألف</td>
</tr>
<tr>
<td>۸۶</td>
<td>۵۹/۴۰</td>
<td>۲۷/۴۰</td>
<td>۱۲/۹۵</td>
<td>ب</td>
</tr>
<tr>
<td>۸۱</td>
<td>۶۰/۴۰</td>
<td>۲۷/۷۰</td>
<td>۱۲/۹۵</td>
<td>ج</td>
</tr>
<tr>
<td>۹۵</td>
<td>۵۴/۸۰</td>
<td>۲۷/۴۰</td>
<td>۱۲/۹۵</td>
<td>د</td>
</tr>
</tbody>
</table>

هم دن مخلوط فاز جامد و مایع. دو اثر مهم در جریان حلال کردن و سرعت آن دارد. هم دن باعث عمل مانند دریای کردن در فاز مایع گردید و بدین ترتیب، سطح نماز حلال با فاز جامد را واداشته و در نتیجه باعث افزایش سرعت حلال شدند. است. هم دن باعث کاهش ضخامت فیلیم و تکثیف شده بیشتر فاز جامد و دیگری در نتیجه تكوپ حلال را تهیه کرد و سرعت حلال را افزایش داده است. به ویژه سرعت واکنش انحلال در اینجا کم بهره و اکتش شیمیایی کنترل کننده است، بنابراین عامل دوم اثر جهدان تناش و
بهینه‌سازی رادانمان استخراج روي از کنسانتره های خاک سپیلیس

سرعت انحلال فقط در اثر آفت‌زایان سطح نماس برای دلالانه مانند درات در فاز مايع با مصرف کاسه های روی در دوره‌ها کم نشان مي‌دهد. اگرچه واکنش انحلال کنتروکتند است ولی تشكيل فیلم دور وراثه می‌تواند به توطئه دندانش فند شوت نفوذ انحلال به داخل دارات جامد شده و موجب کاهش رادانمان استخراج روي گردد.

\[\text{pH} \]

بررسی اثر تر و pH

در این امراضی اثرات دو پارامتر اصلی دما و pH محلول بر رادانمان

 separat می‌کند. با توجه به عدد 2 پایین آورده شد و بدین ترتیب

در تشكیل زل رون به محلول ریز سیستم چرخ دویده به خط آephy با به

میزان پراپاکتی در روی را به خاطر انحلال ترکیبات سیلیکات دانگی کاشت داد. همچنین از نظر میزان رادانمان شیروی مجهز به pH برابر و به دست آمده بود.

الف - تعادل مخازن اسید فازی افزایش یافته با حجم تولید مولکولیت

زال رود. ب - میزان سطح pH دو گیتر که مولکولیت حلال حاوی

فقطی یافته تا از روی باشند. این عمل با استفاده از سیستم بازگشتی

با فلخت باز توی و استفاده از کلسین در خشخبری سازی محلول افزایش

می‌نماید.

تشکر و یادداشت

این پروژه کاربردی به پیشنهاد اکثر معاونان این سیستم و

برق‌کن و یا گیری منجر جنبه‌ای مهندسی موقتی می‌شود که کاربرد

آزاده همکاری برای مهندسی دانشکده فیزیک اجرای مورد برای برقراری قرارگرفته است. از آن در می‌شود.

قبل از می‌شود.

مراجع

\[\text{pH} \]

در سری امراضی لیزر، دما، pH, همانند قبل، اثرات دو پارامتر دما و pH محلول بر انحلال ترکیبات سیلیکات دانگی کاشت داد. همچنین از نظر میزان رادانمان شیروی مجهز به pH برابر و به دست آمده بود.

جوش و pH در pH یک مورد از محلول مولکولیت می‌شود.

بايد به نکته توجه داشته که این پایین از تردنده و تریلیک

می‌باشد. با توجه به عدد 2 پایین آورده شد و بدین ترتیب

در تشكیل زل رون به محلول ریز سیستم چرخ دویده به خط آephy با به

میزان پراپاکتی در روی را به خاطر انحلال ترکیبات سیلیکات دانگی کاشت داد. همچنین از نظر میزان رادانمان شیروی مجهز به pH برابر و به دست آمده بود.

جوش و pH

* نتیجه‌گیری

یافته کننده چنین سیلیکات‌ها سیلیکات‌های کم‌شکل و بیر ایاس کنتروکت

آن با بهبود می‌باشد و باید احجا داد سیلیکات به صورت زا ترید.

برای رسیدن به این هدف باید dما و زمان لیزر قدر

شوند. در اینجا باید pH یک مورد سیلیکات را حل کرده و سپس

در مراحل خنثی سازی pH محلول را به عدد 55-65 رسایی تا

\[\text{pH} \]

