PREDICTION OF THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGERS USING THE COMBINED MODEL

V. Nassirpour & N. Kasiri
CAPE Lab, Chemical Engineering Department, Iran University of Science and Technology, 16418 Tehran, Iran
kasiri@just.ac.ir

Abstract: Heat exchangers are one of the most common process equipments in the process industry with much more significance nowadays due to the importance of energy saving and optimization. The shell and tube type accounts for the majority of the exchangers in use. Changes in processing conditions necessitate prediction of new situations that may arise which is only possible through reliable modeling and simulation procedures. In the present work two separate models (a plug flow model and a cross flow model) were developed. Pressure drop and flow analysis calculations were carried out using Willis and Johnson method for the shell side while tube side process drop was evaluated using the Bell method. Based on these calculation methods a combined model with different combination from the two base models was developed to provide a more real prediction. The simulation results were checked against experimentation taken place at Delaware University and about ±10% error was recorded.

پیش بینی عملکرد حرارتی مبدل های پوسته و لوله با استفاده از مدل ترکیبی

چکیده: توزیع دما در مبدل های حرارتی پوسته و لوله یکی از مهم ترین اطلاعات جهت بررسی عملکرد این تجهیزات می باشد. تاکنون جهت مدل سازی مبدل های حرارتی پوسته و لوله مدل های بسیاری ارائه شده است که اغلب آنها یا به دلیل محدودیت های زیادی یا به دلیل استفاده بیش از حد از روابط هسته سازی در عمل کمتر مورد استفاده قرار گرفته و یا از دید کاربران مورد نیاز نیستند. در این تحقیق ابتدا دو مدل سازی یک مدل حرارتی پوسته و لوله بدون نظر در نظر گرفتن یال ها و یا فرض جریان فاصله برای سیال سمت پوسته و سیال سمت لوله در مدل دایر جریان متقاطع حاصل و بدون در نظر گرفتن جریان مدلی ارائه شده که با حالت ای در مدل محدوده عملکرد حرارتی پوسته و لوله مشخص خواهند شد. محاسبات این فشار و نرخ جریان سیال سمت پوسته نیز با استفاده از رویه ویلس و جانسنون انجام شده است. در ادامه مدل ترکیبی جدیدی جهت پیش بینی انتقال حرارت واقعی و محاسبات توزیع دما در مبدل حرارتی با ترکیب مدل های بر پایه جریان قفی و جریان متقاطع خالص سیال سمت پوسته ارائه شده که سهم هر یک از دو مدل اولیه در مدل ترکیبی جدید به توسط ریاضیات وابسته از آنالیز جریان سیال سمت پوسته قابل محاسبه است. برای بررسی صحت مدل سازی، مقایسه محاسباتی نتایج حاصل از شبیه سازی و نتایج آزمایشگاهی داشته که پرویز توکار تعدادی مدل دارای پوسته نوع E صورت گرفته که مدل ترکیبی ارائه شده در پیش بینی داده های سیالات خروجی از مبدل حرارتی دارای 10% ه خطا متوسط نسبت به داده های آزمایشگاهی می باشد.

کلمات کلیدی: مبدل های حرارتی، مدل سازی، جریان متقاطع، جریان قفی، مدل ترکیبی

Downloaded from ijiepm.iust.ac.ir at 15:25 IRST on Friday December 21st 2018
1. مقدمه
مدل حرارتی و سیال‌های است از اندیشه حرارتی را از سیالی به یک با جهت سایل دیگر که دارای دیافراگمی هستند، منطق می‌کند. کاربرد مدل‌های حرارتی به بیان و در صورت مختلط مدل بین‌های عناصر، از جمله نیروگاه‌های توزیع برق، انباشت‌های صنعتی، داروسازی، صنایع پتروشیمی، سرعت خانه و سیستم‌های نیروگاهی و سیستم‌های ساختمانی و طبقه سطح هر چه ساله تیزی مطروح شده بودند. استفاده دیگر می‌گردد. محفظه لزوم صرف‌حوی مصرف ارزی و جلوگیری از تهاب آن و توجه به مسائل اولیه محیط زیست، تنش میدل‌های حرارتی را پر رگنگت می‌کند.

مدل حرارتی بی‌صورتی مختص نظر کاندیسیونر، جوش آوری، تبخیر کننده‌ها، کوره‌ها، گرم‌کن‌ها و غیره موجود می‌باشد. این میان نقش میدل‌های پیوسته و لوله بسیار چشمگیر می‌باشد. به‌طوری‌که مدل‌های حداکثر از لكلدار بارش می‌شوند.

مدل‌های میدل‌های حرارتی پیوسته و لوله با بی‌چیدگی و دشواری‌های عمده است که هرگاه پیداده از تعریف نمونه بود. نام‌آوری بودن تصیه حرارتی سیال میدل‌های بی‌صورتی سنتی و جدیدی گسترده‌تر و لوله و لوله فاصله درون سیال‌های اساسی، مشبکی دسته‌بندی، سیال‌های پیوسته و لوله و پیچیدگی روانگاه حاصل در مقداری از دیگر نکات و همچنین وجود دیده روش‌هایی که ترکیب آن بر انتقال حرارت و افت شدت درون صندلی حرارتی از ماهیت این مشکلات و پیچیدگی‌های موجود بر راه مدل‌های این تجربیات می‌باشد.

تاکنون روش‌های مختلفی جهت پیش‌بینی انتقال حرارت و افت شدت تهیه و منشأ شده‌است که هرگاه دارای محسوس، معایب محدودبوده‌ها و هدف‌های مختلفی می‌باشد. نمایی این روش‌ها را به‌صورت طبیعی شده کرد:

2. مدل‌سازی حرارتی بوستر و لوله [12]
با در نظر گرفتن فرضیات فوق معادله انرژی سیالی سمت لوله بهصورت زیر خواهد بود (جذب‌های این مدل‌سازی در مراجع [12] ارائه شده است):
\[
\frac{w}{w} \frac{dT}{d\xi} + NTU \left(T_i - v\right) = 0
\] (1)

معادله انرژی سیالی سمت بوستر نیز به‌صورت زیر خواهد بود:
\[
\frac{dV}{d\xi} + NTU \left(\frac{1}{n} \sum_{i=1}^{n} T_i - v\right) = 0
\] (2)

اگر دسته‌وله‌های دارای n دیده لوله با تشکیل آگاه از معادلات (1) و (2)، می‌توانیم می‌شد که با تعریف شرایط مرزی مناسب n+1 معادله تولید می‌شود که با روش پیوسته و لوله [13].

3. 2.1 مدل حرارتی بوستر بوستون و لوله [12]
با در نظر گرفتن فرضیات فوق معادله انرژی سیالی سمت لوله به‌صورت زیر خواهد بود (جذب‌های این مدل‌سازی در مراجع [12] ارائه شده است):
پیش‌بینی عملکرد حرارتی مبدل‌های بوستن و لوله با استفاده از مدل ترکیبی

شکل 2 مبدل حرارتی بوستن و لوله با جریان متقاطع

با درنظر گرفتن فرایند فوق و با توجه به شکل (2) معادله حاکم بر سیالات سمت بوستن و لوله برای مسير متقاطع شماره ۱ به‌صورت زیر خواهد بود (جزئیات این مدل ساری در مراجع [۱۱۱] ارائه شده است):

\[
\begin{align*}
\frac{dT_{i,j}}{ds} &= B \left(T_{i,j} - v_{i-1/2,j} \right) \\
\end{align*}
\]

که مقادیر \(\omega \) و \(B \) به‌صورت زیر قابل محاسبه می‌باشند:

\[
\omega = \frac{1}{1 - e^{-n \tau u_n}} \quad \text{و} \quad B = n t u_n \left[1 - \omega (1 - \mu) \right] = \frac{n t u_n}{1 + \omega n t u_n} \]

معادله (۱) را با استفاده از تفاوت‌های محدود به‌صورت پسر بسط داده وبر اساس سازی حرارتی حاصل خواهیم داشت:

\[
\begin{align*}
T_{i,j} &= \left(\frac{1}{1 + B \Delta S} \right) T_{i,j-1} + \left(\frac{B \Delta S}{1 + B \Delta S} \right) v_{i-1/2,j} \\
v_{i+1/2,j} &= (1 - \mu) T_{i,j} + \mu v_{i-1/2,j} \\
\end{align*}
\]

که عرض حرارتی ممبر متقاطع (فاضل) بدون بعد می‌باشد.

می‌توان این دستگاه معادلات دیفرانسیل را حل کرد. شرایط مرزی به‌صورت زیر تعریف می‌شوند:

برای مدل‌های اولیه حریم و ناهسوم:

\[
\begin{align*}
\zeta = 0 : \quad T_i &= 0 \quad i = 1, 2, \ldots, n \\
\end{align*}
\]

برای مدل‌های با جریان هموس و ناهسوم:

\[
\begin{align*}
\zeta = 0 : \quad v &= 1 \\
\end{align*}
\]

یک مدل سازی مبدل بوستن و لوله با فروریخت جریان

متقاطع برای سیال سمت بوستن

مدل سازی جریانی متقاطع شامل \(n \) لوله اولین با توسط سب و رازل [۱۱۱] ارائه و پیامدهای آن مدل به یک مدل حرارتی بوستن و لوله تعیین شده است [۱۳۱].

فرآیند مورد استفاده در این مدل سازی عبارت است از:

1- سیال سمت بوستن کامل مخلوط شده در نطاق گرفتن می‌شود.
2- دوی سیال عبرتی از روی لوله‌ها (سیال سمت بوستن) در جهت عaddon بر لوله‌ها متغیر است.
3- ثابت ریز جریان برای یک توده که در فرآیند فروریخت حرارتی پایه ریزی فرد لوله‌ها برای خواهیم بود.
4- دوی سیال درون هر لوله به‌صورت بوستن در جهت حرارت سیال درون لوله متغیر است و با استفاده از واحدها احتراق کالر در سیال سمت لوله، دوی اطراف لوله‌ها به‌صورت کنوناک خواهیم بود.
5- اثرات جریان‌های دویانی سمت بوستن مصرفی می‌شود.
6- ضریب کلی انتقال حرارت و همچنین کلیه خواص فیزیکی تابیت.

فرآیند می‌شود.
بنابراین سهم هریک از جریان‌های نمايش داده شده در شکل گرفته شده‌اند.

\[
E_i = \frac{\dot{M}_i}{M_T}
\]

\[
E_c = \frac{\dot{M}_c}{M_T}
\]

\[
E_b = \frac{\dot{M}_b}{M_T}
\]

\[
E_s = \frac{\dot{M}_s}{M_T}
\]

از ترکیب روابط فوق سهم‌های قابل و متقاطع بهصورت زیر در شکل محاسبه می‌شود:

\[E_{\text{Plug}} = E_i + E_s\]

\[E_{\text{Cross}} = E_c + E_b\]

با در نظر گرفتن معادله ۱۰ و شرایط مزی ۱۱ یا ۱۲ می‌توان توزیع دمای سیال سمت بوسته و لوله را با امردل‌های دارای جریان متقاطع خلاص فهرست هم‌سازی نمود.

\[
\begin{align*}
\text{۱۲-۱-۳-۲ مدال‌سازی ترکیبی بیش‌تیپی جهت پیش‌بینی توزیع جریان سیال سمت بوسته در حقيقت تلقی از جریان‌های قابل و متقاطع می‌باشد. از این نظر، اگر حرارت واقعی انجام شده برای سیال سمت بوسته به‌صورت زیر محاسبه می‌شود:
\[Q_{\text{Actual}} = E_{\text{Plug}} Q_{\text{Plug}} + E_{\text{Cross}} Q_{\text{Cross}}\]
\end{align*}
\]

امضایگاهی در دهه ۵۰ و ۶۰ میلادی انجام مهندسین مکانیک آمریکا و دانشگاه‌های بریتانیا تحقیقاتی را جهت پروپوزال در زمینه جریان سیال سمت بوسته و انتقال حرارت درون مدل‌های بوسته و لوله به‌صورت کاملاً متفاوت است. برای این دلیل، این تحقیقات شامل بررسی اثرات برخی پیش‌بینی جریان‌های نشان و جریان‌های جابجای روتی افت شماره و انتقال حرارت می‌باشد. با استفاده از اطلاعات جمع‌آوری شده از ازمایش‌های تجربی می‌باشد. تعداد زیادی ازمایش‌گاه در گزارش‌های نهایی دانشگاه دلاور توسط بل [۱۴] ارائه شده است.
جدول ۱. مشخصات هندسی مبدل حرارتی دانشگاه دالور

<table>
<thead>
<tr>
<th>متغیر</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایل سمت پوسته</td>
<td>896 ملی‌لیتر</td>
</tr>
<tr>
<td>سایل سمت لوله</td>
<td>۰.۴۰۹۶ m</td>
</tr>
<tr>
<td>طول لوله</td>
<td>۰.۲۳۲ m</td>
</tr>
<tr>
<td>قطر داخلی پوسته</td>
<td>۰.۰۰۶۳۵ m</td>
</tr>
<tr>
<td>قطر خارجی لوله</td>
<td>۰.۰۰۱۲۴۴۶ m</td>
</tr>
<tr>
<td>تعداد لوله</td>
<td>۴۲۷</td>
</tr>
<tr>
<td>دما اندازه گیری</td>
<td>۵</td>
</tr>
<tr>
<td>دما اندازه گیری مکانیکی</td>
<td>۰.۰۶۷۱ m</td>
</tr>
<tr>
<td>شمات لوله</td>
<td>۰.۰۰۱۵۸۷۵ m</td>
</tr>
<tr>
<td>لقی بین پوسته و دسته لوله</td>
<td>۰.۰۱۳۵۹ m</td>
</tr>
</tbody>
</table>

مبدل حرارتی مورد استفاده در آزمایش‌های دانشگاه دالور دارای نازل هایی از نوع مستطیلی می‌باشد. جدول ۲ خلاصه‌ای از شرایط عملیاتی و مقادیر بریدگی یافته و لقی‌ها را در دو آزمایش انتخاب شده نامایش می‌دهد.

جدول ۲. خلاصه شرایط عملیاتی جهت شبیه‌سازی

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>دمای ورودی (Celsius)</th>
<th>دمای پوسته (Celsius)</th>
<th>فاصله بین پوسته (mm)</th>
<th>لقی بین پوسته (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-TL5-1-H-7</td>
<td>۱.۲۱</td>
<td>۶۲.۶۱</td>
<td>۱۰.۱۱</td>
<td>۲.۰۳</td>
</tr>
<tr>
<td>10-TL5-1-C-1</td>
<td>۱.۱۵</td>
<td>۶۲.۶۱</td>
<td>۱۰.۱۱</td>
<td>۲.۰۳</td>
</tr>
<tr>
<td>10-TL5-1-H-1</td>
<td>۰.۹۴</td>
<td>۶۲.۶۱</td>
<td>۱۰.۱۱</td>
<td>۲.۰۳</td>
</tr>
<tr>
<td>10-TL5-1-H-2</td>
<td>۰.۹۴</td>
<td>۶۲.۶۱</td>
<td>۱۰.۱۱</td>
<td>۲.۰۳</td>
</tr>
<tr>
<td>10-TL5-1-H-3</td>
<td>۰.۹۴</td>
<td>۶۲.۶۱</td>
<td>۱۰.۱۱</td>
<td>۲.۰۳</td>
</tr>
</tbody>
</table>

در این بخش به رسم نمودرهای توزیع دما و دمای سیال سمت پوسته و لوله برای آزمایش‌های ۱0-TL5-1-1-H-7 و 10-TL5-1-1-C-1 نپدخته شده است که در آزمایش اول سیال سمت پوسته گرم و در آزمایش دوم سیال سمت پوسته سرد می‌شود. لازم به ذکر است که نمودرهای سایر آزمایش‌های انتخاب شده کاملاً مشابه نمودرهای دو آزمایش اولیه می‌باشند و بهره جلوگیری از تکرار مطالعه مشابه ارائه نشده‌اند.

برای تولید حرارتی در دیوار محیطی به فرآیند ۱0-TL5-1-1-C-1 مصرف می‌شود.

شکل ۴. توزیع دما بدون بعد سمت پوسته با فضای مدل ترکیبی برای آزمایش ۱0-TL5-1-1-C-1

شکل ۴. نمود ایرانی آزمایش ۱0-TL5-1-H-7
جدول 3. مقایسه نتایج افت فشار با اطلاعات آزمایشگاهی

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>افت فشار سمت پوسه (kPa)</th>
<th>افت فشار اندازه‌گیری شده تجربی (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-TL5-1-H-7</td>
<td>85.9</td>
<td>75.4</td>
</tr>
<tr>
<td>10-TL5-1-C-1</td>
<td>85.0</td>
<td>75.1</td>
</tr>
<tr>
<td>10-TL1-1-H-1</td>
<td>60.8</td>
<td>51.8</td>
</tr>
<tr>
<td>10-TL2-1-H-2</td>
<td>88.1</td>
<td>75.9</td>
</tr>
<tr>
<td>10-TL1-1-H-2</td>
<td>25.0</td>
<td>22.7</td>
</tr>
<tr>
<td>10-TL2-1-H-3</td>
<td>35.8</td>
<td>29.9</td>
</tr>
</tbody>
</table>

مقادیر داخل پرانتز اطلاعات آزمایشگاهی هستند.

جدول 4. مقایسه نتایج انتقال حرارت با اطلاعات آزمایشگاهی

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>درصد خطأ</th>
<th>درصد خطا</th>
<th>درصد خطا</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-TL5-1-H-7</td>
<td>-0.2</td>
<td>76.4 (78.0)</td>
<td>-2</td>
</tr>
<tr>
<td>10-TL5-1-C-1</td>
<td>-0.8</td>
<td>54.5 (52.8)</td>
<td>+3.1</td>
</tr>
<tr>
<td>10-TL1-1-H-1</td>
<td>-2.1</td>
<td>76.9 (78.8)</td>
<td>-2.3</td>
</tr>
<tr>
<td>10-TL2-1-H-2</td>
<td>-3.6</td>
<td>75.7 (77.8)</td>
<td>-2.7</td>
</tr>
<tr>
<td>10-TL1-1-H-2</td>
<td>-3</td>
<td>77.8 (79.3)</td>
<td>-1.9</td>
</tr>
<tr>
<td>10-TL2-1-H-3</td>
<td>+1.5</td>
<td>78.5 (79.4)</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

نمونه‌های 7 و 8 مقایسه توزیع دما در طول مبدل برای آزمایش‌های 10-TL5-1-C-1 و 10-TL5-1-H-7

با مقایسه نتایج حاصل از شبیه‌سازی و محاسبات انتقال حرارت ملاحظه می‌شود که دما خروجی سمت پوسه و لو هر طور متوسط داهنده انتقال حرارت 24/3 درصد درجه دوه درجه داهنده انتقال حرارت از پوسه مبدل به محیط اطراف نیز در این داده‌ها گزارش شده است.

نتایج 7 و 8 نیز مقایسه‌ای میان توزیع دما برای دو آزمایش 10-TL5-1-C-1 و H-7 را نمایش می‌دهد که هر دو آزمایش اول جهت گرمایش و آزمایش دوم جهت سرمایش سمت پوسه است.

جدول 5. مقایسه تعداد واحدهای انتقال سیالات سمت پوسه و لو

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>NTU</th>
<th>NTU90</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-TL5-1-H-7</td>
<td>0.1913</td>
<td>0.4752</td>
</tr>
<tr>
<td>10-TL5-1-C-1</td>
<td>0.1903</td>
<td>0.4692</td>
</tr>
<tr>
<td>10-TL1-1-H-1</td>
<td>0.1898</td>
<td>0.5560</td>
</tr>
<tr>
<td>10-TL2-1-H-2</td>
<td>0.2348</td>
<td>0.6734</td>
</tr>
<tr>
<td>10-TL1-1-H-2</td>
<td>0.1590</td>
<td>0.7220</td>
</tr>
<tr>
<td>10-TL2-1-H-3</td>
<td>0.1851</td>
<td>0.8673</td>
</tr>
</tbody>
</table>

References

علامات بیوناتی

<table>
<thead>
<tr>
<th>علامت</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>دمای بیند بعد سیال سمت لوله.</td>
</tr>
<tr>
<td>(t_{\text{in}}, t_{\text{out}})</td>
<td>دمای سیالات سمت لوله و پوسته ((\degree C)).</td>
</tr>
<tr>
<td>(m, w)</td>
<td>سرعت سیال سمت لوله ((m/s)).</td>
</tr>
<tr>
<td>(W)</td>
<td>سرعت مستقیم سیال سمت لوله ((m/s)).</td>
</tr>
<tr>
<td>(R)</td>
<td>چهت حرکت سیال سمت لوله.</td>
</tr>
<tr>
<td>(s)</td>
<td>توده بعد حركت سیال سمت لوله.</td>
</tr>
<tr>
<td>(s = \frac{t_{\text{out}} - t_{\text{in}}}{t_{\text{in}} - t_{\text{out}}})</td>
<td></td>
</tr>
<tr>
<td>(u)</td>
<td>دمای بیند بعد سیال سمت پوسته.</td>
</tr>
</tbody>
</table>

زیرنویس‌ها

- \(\mu \): پارامتر کمکی معادله (14)
- \(\zeta \): طول بیند بعد \(\frac{x}{L} \)
- \(\omega \): پارامتر وزنی

عبارت‌های یافته:

\[
T = \frac{t_{\text{out}} - t_{\text{in}}}{t_{\text{in}} - t_{\text{out}}}
\]

بالاترین‌ها

- Actual
- Cross
- Plug