ARCHITECTURAL DESIGN PROCESS IN TECHNOLOGY AGE

Farhang Mozaffar
Assistant professor - School of Architecture and urban studies- Iran University of Science and Technology

Mehdi Khakzand
Ph.D. Candidate- Iran University of Science and Technology

Abstract: Designers draw diagrams to think about architectural concepts and design concerns. Scientists are interested in programming a computer to recognize and interpret design diagrams to deliver appropriate tools for the design task at hand. Researchers conducted empirical studies to find out if designers share drawing conventions when designing.

Quick improvement in technology guide us to develop digital design environments. Such environments can exploit creativity in architectural design and finally conduce to produce visual sources to creative design to evolve architectural education. This problem can be the topic for many architectural researches in future although several researchers are studying these systems abroad.

چکیده: طراحان برای تفکر بر اساس ایده‌های معماری و روابط طراحی به ترسیم نمودارها دست می‌زندند. از طرفی دانشمندان و مهندسین راهپیمایی هم عالی‌مدت‌های ترسیمی داشته‌اند تا راه‌هایی را برای تشخیص و تفسیر نمودارها و ترسیم‌های معماری، طراحی و برنامه‌ریزی کنند.

این کار در جهت فراهم کردن مناسبی در دست طراحان جهت ساختن‌های طراحی ایست. در این راه بعضی از محققان برای درک اینکه آیا طراحان در هنگام طراحی به نتایج یابند و اصول طراحی می‌پردازند یا نه، دست به مطالعات تجربی زده‌اند.

بیشترین تکنیک ها را به سمت توسعه محیط‌های طراحی راهپیمایی می‌برد که حتی می‌توانند خلاقیت نیز در طراحی معماری بهره‌بردارند و نهایتاً منجر به معرفی برنامه‌های جدید که از نمودارها و طرح‌های داشته‌اند از آزاد بین‌یاران می‌باشند. جهت طراحی استفاده کند و مراجع بصری را برای طراحی خلاق باید به توجه داشته و می‌تواند موجب معرفی شود که از طراحی در آینده باشد، جنگجویی جدیدی از پژوهشگران در خارج از کشور نیز در حال مطالعه این سیستم‌ها می‌باشد.

کلمات کلیدی: تکنولوژی در معماری- فراینده طراحی معماری- طرح‌های اسکیس- ابزارهای طراحی- نرم افزارهای طراحی معماری

دکتر فرهنگ مظفر
دریافت و مرور: 17/6/1392
تاریخ تصویب: 30/6/1392

مهدی خاک زند
دکتری فرهنگ مظفر
دانشگاه علوم و صنعت ایران
mghakzand@iust.ac.ir

مهدی خاک زند، دانشجوی دکتری معماری، دانشگاه علوم و صنعت ایران
mghakzand@iust.ac.ir
1. مقدمه

در سال‌های اخیر به دلیل استفاده از تکنولوژی اطلاعات شاهد پیشرفت‌هایی یکی از تکنولوژی‌های معمولی به‌شمار می‌آید. ابزارهای جدید معمولاً را قادر به ترمیم با دقت بالا و سرعت بی‌سی شده است. کامپیوترها رشد و توسعه قرارا را به طراحی معمولی ارزیایی و با واردات نرم‌افزار بی‌سی را به‌کار می‌برند. این معمولی ارزیایی (Computer Aided Design) Cad داشته‌اند. برای استفاده در طراحی برای کمک به فرآیند طراحی به صورت یک برنامه بعنوان نرم‌افزار بی‌سی (Computer Aided drafting)

شکل 1. چرخه طراحی روزانه و ایکلز

با این حال، واقعیت بی‌پایت از این‌ها دارد، یا رضایت‌آوری، که در گذشته برای بررسی و روند معمولی مورد استفاده بوده، شامل موارد زیر بوده است:

- مصاحبه با طراحان
- مشاهده و پیدایش ناتوان آمار
- مطالعات قارهدایی یا توانا (بیشتر مربوط به بروزهای طرح واقعی است، به خاطر اینکه ساخته که در خدای مقدار قاره‌های بزرگ در مورد یافته‌ها)

ازمینهای کنترل شده (نتایج، که تحت مدیریت کنترل شده یا شرایط آزمایشگاهی) انجام می‌شود که در این مطالعات موضوعاتی مانند و ساخته‌ها مورد به‌بیان صدق می‌کند و اطلاعات آن تبدیل و جزیی می‌شود. این‌ها از طریق تکنولوژی。

تازه و حیاتی ترکیب تفکر (مربوط به طبقات نظری) تجزیه و تحلیل و تکنیک تفکر (مربوط به طبقات نظری) این‌ها راه‌نما یا ارزش‌مند است که به چه مکتی کند طراحی را بهتر درک کنیم و تحقیقات خود را پردازش ابزار جدیدی که طراحی مفهومی را حمایت و پشتیبانی کند، گسترش دهیم.

2 Nigel Cross, N., "Research in design thinking", 1991

شکل 1. چرخه طراحی روزانه و ایکلز

Raazehnagar, Hamdiras, "Product design: fundamentals and methods", 1995
2. مطالعات تجربی و روبوکردها در فرآیند طراحی معماري

در آزمونهای اولیه برای شرکت‌های مختلف، نشانه‌های ترسری می‌با نتیجه‌گیری داشتند که در این مطالعات محل‌های کاربردی برای فرآیند طراحی معماري وجود دارد. این کار از استفاده از مدل‌های مختلف طراحی معماري به کمک منطق هسته‌ای (Archie) یا از طریق آزمایش مشابه به کار گرفته شد. این افزش در استقرار در زمینه‌های مختلف طراحی معماري و نیز در کاربرد در طراحی معماري به‌کار گرفته شد.

تشخیص موفقیت اجرای برنامه‌های مختلف ابزارهای مختلف در نحوه‌ی عملکرد در فرآیند طراحی معماري بررسی شد.

شکل ۲: طراحی از نسخه‌های قراردادی و پیکربندی‌ها (پیامدهای معماري) در نمودارهای بهره‌مندی.
هنگامی که تعداد سه مراحل تولید تغییراتی در طراحی به جای باقی مانده است، این امر ممکن است برای سیستم‌های مختلفی از استفاده یافته کسب کرده باشد. به طور مثال، فرآیند خلاقیت طراحی با دیدگاه لاوسون شامل تعداد چهار مراحل است:

1. اولین مراحل: آگاهی راه حل
2. دومین مراحل: انجام مراحل تولید
3. سومین مراحل: تکمیل و تکمیل
4. چهارمین مراحل: تکمیل و تکمیل

فرآیند خلاقیت طراحی با دیدگاه لاوسون
شکل 1: فرآیند خلاقیت طراحی با دیدگاه لاوسون

آرچر، ۱۹۶۹، صفحه ۹۴ و صفحه ۱۰۰

(Principles and Practice of Psychological Science, ۱۹۶۶، صفحه ۹۴ و صفحه ۱۰۰، آرچر)

تا سال ۱۹۷۰ به طور کامل مورد توجه قرار گرفت. (البته، اگر نظرات و نظرات عمومی به این موضوع نیستند، در حال حاضر گذشته است.) اغلب فرآیندهای جدیدی در طراحی، از همگونی و تکرار استفاده می‌کنند. (مثلاً مدل روزنگر، ۱۹۵۶) تحلیل، ترکیب، تعیین سازی و ارزیابی، و همچنین این مدل‌ها مجدداً و تحقیقات بین فعالیت‌های اصلی را در نظر می‌گیرند.

همه مطالعات مربوط به فرآیندهای طراحی که در اواخر دهه ۵۰ و در اوائل دهه ۶۰ آغاز شد، با توجه به آن، تعداد سه مراحل حاصل را به طور می‌توان با روش مناسب دنیال و کندن، بنابراین، غفال‌های طراحی (فی‌سم) فایل و قابل قبول قرار می‌دهد. (Dickerson & Baker، ۱۹۶۶، صفحه ۱۰۰) تصویر آپارتمان قابل قبول قرار می‌دهد.

شکل ۴: مدل طراحی آرچر

(Archer, ۱۹۶۹، صفحه ۹۴ و صفحه ۱۰۰)
شکل ۸. فاژه‌های فرآیند طراحی از نظر آزمون

یکی دیگر از مدلهایی که فرآیند طراحی را در فصل مشترک (رونده جلو مسأله) و (فرآیند خلاف‌الاقبت) دنبال می‌کند الگوی گل‌دشتی است.

شکل ۹. الگوی گل‌دشتی (۱۹۸۲)

مدل دیگری از فرآیند طراحی نیز توسط ارچر ارائه شده است. در این مدل، مرحله دیگری نیز به دو مرحله (تجزیه) و (ترکیب) (در مدل اکسندر) اضافه می‌شود و آن ارتباط است.

در الگوی «جوئن» ارتباط بین هر مرحله آنالیز، ترکیب، و ارزیابی در داخل یک دیگری جرخی و با توجه به سیر تحول ایده‌ها، خام و انتزاعی، آن به حال تشکیل‌گیری و نهایتاً به حال ایده‌های محکم و نهایی تعیین شده است. [۱۶]

شکل ۷. معرفی الگوی روندن طراحی-توسط جوئن

جوئن شی روژنستر و روژن‌بگ و اکELS، (۱۹۸۵) اوز مدل الگویی روندن طراحی را بر اساس همان سکاتشی‌های سه گانه می‌داند و آنها را در جرخه و روی‌پری فاز می‌دهد. [۱۷] گوم (۱۹۶۹) Markus نشان داد که دو ساختار طراحی مشابه وجود دارد. یک فرآیند مشترک و یک فرآیند تکراری (آزمون) (۱۹۶۹) فرآیند ممکن که طراحی را به ۷ فاز که با یک مطالعه امکان پذیر شود می‌شود.

تخمین نمود. برای هر کدام از این فازها یا یک تحلیل ریخت

۱- فرآیند تحقيقة
۲- فرآیند خلاق
نظری چیل (Ideational Fluency)
- انعطاف پذیری خود به خودی (Spontaneous Flexibility)
- انعطاف پذیری طبیعی (Adaptive Flexibility)
- ابتکار (Originality)
- تعیین معناداری (Functional Redefinition)
- تعیین ساده شکل (Form Recognition)

شناخت فرم

طرح‌سازی نمایش جزئی گردد.

3- اصول طراحی و زمینه‌های طراحی

از تجربیات طراحی می‌توان درک کرد که طراحان اصولینه‌های طراحی را با هم قسمت می‌کنند. نه فقط در زمان کشنده نمودارهای مرتبات مفاهیم معنی‌دار بیاب دارای طراحی مانند برای ادغام ساده مثل دایره و خطوط در ترسیمات خود استفاده می‌کنند بلکه از این نگارشی اصول با یکدیگر کمک می‌کنند (نظیر استفاده از خطوط موازی برای نمایش دیوار و پنجره و یک پیکان و یک هر چه در نشان داده علامت یا که در درون هر یک نوشته می‌شود می‌تواند استفاده از کلمه »ورودی« نشان داده شود.

4- فرآیند طراحی

شکل 10. فرآیند طراحی سنتی و پوپری

یکی از عکس الکل در عمل در طراحی صحت می‌کند که این مرحله در طی فرآیند طراحی برای همه کاربران نشان‌دهنده می‌باشد. دیگر زمانی که اطلاعات مفاهیم در مقابل موضع مکان و ثبت‌پذیری مخصر آن، بر روی تخت جسم و یا بر روی صفحه مورد ارزیابی قرار می‌گیرد (CAD)

شکل 11. طراحی از قواعدی در ترسیمات معنی‌دار

می‌کند مانند استفاده از اشكال و حروف

روواتی نقاشی (Figural Fluency)
شوند که فضایی در طرح گرفته شده بود در تعداد مورد نظر کافی است
یا تنها همه چنین جهت ابزار بیشتری طراحی به‌پرس
در و نجمه در طول دیوارها و میلیون سرویس‌ها می‌پردازد.

4.4. تکنولوژی در تمرینات معمایی

فن اوری دیجیتالی در روندهای توصیفی، یکی از این مسائل، استفاده نمی‌شود.
می‌تواند به‌طور پیوسته از طبقات مختلفی از طریق فرانسوی، انگلیسی، اسپانیایی،
به‌طور کلی، در هر یک از این ترکیب‌های از صورت‌های مختلف به یک نکته ممکن
اینکه گاه طراحان از رسم دایره برای برای یک نشان دادن اهمیت جزئیات،
نواحی تصویری با یک توضیح برای بیشترین استفاده می‌کنند.

شکل 12. طراحان مفاهیم مختلف را بوسیله تفسیر می‌پذیرند.

روش کردن زمین‌های طراحی با اندازه‌گذاری و میلیون

علاقه بر مطلب با یک‌میلیوون در مورد طراحان از نماهای معمایی
مثل مسلمان و اندازه‌گذاری استفاده می‌کنند که بیشتر موضوعات
طراحی را در ذهن خود نگه دارند.

در زمان‌های انسانی و مسلمان در فضاهای مختلف با اندازه‌گذاری
مشخص طراحان از تونل‌های ابعاد در طراحی بهره می‌برند یا
پتانسیل فضاهای را در ذهن خودشان به‌شماره و بر فرد می‌کلی قبیل
منتقل نمی‌آیند. در شکل 5، بیضا که چگونه طراحی طرح خود را
پیش‌سازی از توزیع کرده آنها تا پیوستن سطح را محسوب می‌کنند.

شکل 13. توجه به میزان ابعاد و اندازه در فرآیند طراحی

هگمت‌های تغییر در مورد فضاهای معمایی مختلف طراحی اشکال
ساده‌ای را به‌طور مسلمان در فضا نشان می‌دهند و بهبود پیوسته
زمینه‌هایی را که در دوران به طراحی می‌کنند در ذهن‌شان بی‌تغییر
می‌کنند. به نوعی مثل هیگموت تغییر یافته هزینه در اطراف می‌پردازند تا مطمئن

\[\text{Pollalis, S.N., Bakos, Y., "A Framework for the design process", 1987} \]
کامپیوتری که نیروی محرکه حرکتی را بی‌خیالسازی می‌کند به اینجا نیاز دارد:

الف) اطلاعات ترسیم دست آزاد که با شبکه نورورزی تولید شده باید راه را به گزینه‌های تغییرات می‌دهد.

بر این بنا، نیروی حرکتی که بر اساس اطلاعات ترسیم تولید شده است باید به طور مستقیم به کامپیوتری که نیروی حرکتی را بی‌خیالسازی می‌کند، تبدیل شود.

ج) شناختن نگاه‌هایی وجود آمد و تبادل رایگی در نورورزی.

(5) انجام دادن تغییراتی که می‌تواند یک نورورزی را به طور مستقیم تبدیل کند.

(6) توصیه بهتری از میان نورورزی‌ها و نشان دادن طراحی‌ها به سمت منفی و همچنین جنبه‌های نورورزی‌ها.

(7) در زیر به منظور حفظ رهبری و یک‌پارچه‌ی ترکیبی بر می‌گردد.

(8) مطالعه تصویری یک پارمهایی، مقایسه و جایگاه کامپیوتری در نورورزی.

(9) استفاده از مدل‌های نورورزی، درست کردن و روابط بین نگاه‌های راه اندازی و نیروی حرکتی.

(10) نمایندگی یک پارمهایی که می‌تواند یک نورورزی را به طور مستقیم تبدیل کند.

(11) نمونه‌های مفهومی نورورزی‌ها را به طور مستقیم تبدیل کند.

(12) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(13) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(14) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(15) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(16) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(17) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(18) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(19) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(20) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(21) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(22) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(23) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(24) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.

(25) انتخاب از مدل‌های نورورزی، طراحی و نیروی حرکتی را مطرح کند.
Mark D. Gross, Ellen Yi, Leun Do

4-1. Digital Clay

4-2. Drawing and Design intention

The Electronic Cocktail Napkin Project

Digital Clay

Ellen Yi, Leun Do

β- گاهی تفاوت با نیروی حاصله نیاز به مقابله آنها و تحقیق شیبپردازها و

تباختن آنها دارد. پس یک سیستم کامپیوتر برای کار داشته که نمودارهای A و B

را که همسان هستند تخصیص دهد و بتواند

زیربرخی توجهی دهد. این سیستم کامپیوتری باید نمودارها را ببندد و آنها را به هم مقایسه نماید.

و در اخر سیستم کامپیوتری ها نمودارهای طراحی را پیش‌بینی

می‌کند. پس باید نمودارها را در سطح گوتوگان خلاصه کند، چرا?

که نمودارها دانل، نمودارهای خلاصه شده از شکل‌های طراحی جزو هستند. بنابراین هر طراحی معمولی از طریق نمودارهای مختلف

در سطح گوتوگان خلاصه می‌شود. سیستم کامپیوتری باید این

خلاصه بندی را در نظر گرفته و آنها را در نمودار تصور و

6. از ازاره‌های که معمولان در فرآیند طراحی کمک

می‌کند

معمولان از ازاره‌ها، رسانه‌ها و روش‌هایی که برای شروع طراحی

استفاده می‌کند، توانایی منفی‌افزاری دارد. این‌ها احساس می‌کند،

راحتی‌ساخت نیست که باید نمودارها را در سطح گوتوگان خلاصه کند، یعنی

در دیگر فرهنگ از پایه‌های دیگری، به‌طور مثال کلاسیک، این

می‌کند که به نقره و نمودارهای مختلف

در طول این “شکار” راه حل خود که می‌پندان این است که

اسکس یا شبیه طراحی زبانی تولید نمی‌کند. سپس با بررسی

اسکس‌های خود کشف‌پذیری می‌کند که گاهی انتشار را نادیده

اند. روان‌سازی و ترکیبات جدیدی را می‌پیدان که راه‌هایی را برای

طراحی کردن و تولید و اصلاح ابزار استوانه‌بندی آنها پیش‌بینی می‌کند.

تحت‌پوش اجرای این داده است که کامپیوترها به تدریج این قابلیت

را پیدا می‌کند که کنترل امکانات ویژه‌های را یک طراحی

مه‌خویی لازم است. در نتیجه، این

پیشرفت‌های و جدیدترین پای خودست. گروهی برای

مپیکی است. تعدادی از این

مپیکی را که در برخورد با یک مورد طراحی لازم است این

قرار می‌آورد است:

(1) وسیله لازم برای طراحی (کاپ) جهت بیان طراحی تجزیه‌ی

ابهامات و چیزهایی که احساسات وی را بر می‌انگیز.
۷. تکنولوژی، بیلی میان فاصله‌ها

 جدا از تهیه ابزارهای صنعتی و مناسب، تکنولوژی یادی به تواندن بین ابزارهای متنوع، متفاوتی از جنگ‌های فضایی کمک کند تا در فرایند اطلاعات در امکان باشد.

 اولاً، نتیجه‌گیری که روند تصاویر می‌دهد، از ورود به کشیدن طرح‌های خود را بر روی کاغذ ادامه می‌دهد و پس از این کار، دوباره به برنامه مدلسازی ۳ به‌دست آمده خود را با ابزارهای متنوع، متفاوتی از جنگ‌های فضایی کمک کند تا در فرایند اطلاعات در امکان باشد.

 بعد از تغییراتی که روی تصاویر می‌دهد، از ورود به کشیدن طرح‌های خود را بر روی کاغذ ادامه می‌دهد و پس از این کار، دوباره به برنامه مدلسازی ۳ به‌دست آمده خود را با ابزارهای متنوع، متفاوتی از جنگ‌های فضایی کمک کند تا در فرایند اطلاعات در امکان باشد.

 ۱. ساختار تکنولوژی (براکس ایس) کارگاه سیستم‌های طراحی

 این برنامه به طراح اجرا می‌کند که به طور مستقیم فضاهای مورد نظر خود را در یک محفظه ۳ بعدی بودن دخالت بی‌پره سیستم، طراحی نماید.

 ۱. Skethup محبوب‌ترین طراحی

 Sketch understanding ۱۷. محبوب‌ترین طراحی

 این برنامه به قصد کمک به نشر تجربه کننده، تکنولوژی به وسیله ای برنامه طراحی مستقلی بویسیل دست اشکال ۳ بعدی با CAD سیستم ARCADE نماید.

 ARCADE (Advance Realism CAD Environment)

 این برنامه به علت نشتی کارگاهی رابطه در دارستاده به وسیله ای برنامه طراحی مستقلی بویسیل دست اشکال ۳ بعدی با CAD سیستم ARCADE نماید.
پیگیری تکنولوژی در فرآیند طراحی معماری

1-1. تأثیر تکنولوژی بر فرآیند طراحی

تأثیر تکنولوژی بر مقوله طراحی می‌تواند از طریق 2 گناه منفی‌آور بررسی شود.
الف) کارایی: طراحی می‌تواند در زمان کمتر، با هزینه کمتر و راحتی بیشتر انجام شود. کامپیوترها تأثیر بسیار زیادی بر این جنبه از طراحی دارند.
ب) افزایش کیفیت: ایا تکنولوژی می‌تواند کیفیت طراحی را افزایش دهد؟

شاید جواب دادن به این سوال می‌تواند همیشه باشد و باز در پاسخ دادن بیشتر هوشمندی به طراحی دانوای احساس اطمینان به طراح از جستجوی همگی‌های موجود، تجربه هندسه‌های مختلف و پیچیده، بهبود طرح‌های ابزاری، غیر کرمان معمار از نظر آزارهای مورد نیاز، مدرک و ترکیب بررسی‌ها در فرآیند طراحی و انتقال انطلاعات و ادامه با سایر طراحان.

با این وجود تکنولوژی خواهد توانست قدرت طراحی را در طراح افزایش دهد. برای روند شدن این اقدام که تکنولوژی می‌تواند باعث شود طراحی کاربردی کن بخشد، بازی می‌تواند نیازی به دو معمار با توانایی مساوی انجام شود (که یکی از تکنولوژی پیشگام می‌بود) و گرچه ممکن است معنای اقدار خلاقیت به طرح در مقابل معمار دیگر به کمک تکنولوژی پیشرفته بسیار بیشتر باید.

شغل 19. تکنولوژی رابطه میان الگوهای متفاوت

این مطالعه تجريبي توسط یک آزمون پرسشنامه اي انجام گرفت که سوالات آن در انتهاي مطالعه امده و به هاي از طرح اين سوالات دستگاهي به پاسخ سوالاتي بود که در اندیاب مقاله مطرح مي‌گردید. با توجه به سوالات 1 و 2، چنانچه در جداي مشاهده است، رژيmai نظارت اولین معامل‌ها در اولین نقطه شناست گروه مورد اکثریت آنها تأثیر را براي افزایش تواناي طراحی معامل‌ها (در فرآيند ترمیم دیاگرامها و اسکیسها) بدین‌ترتیب‌ها، حضور رايت را در دنبال طراحی محيط قبول کردند و اهميت آنها در مجموع مفهوم نيز مورد واقع شود و اکثریت آنها با اين موضوع موافقند.

از سوي دیگر در جواب به سوال 2، استاندارد محورهای دانشگاه علم و منابع ميان آزمون نيازي طراحان و معاملار را در روند طراحی توسط رايت و همافزار زبان ارزیابی کردند و اين موضوع می‌تواند اهميت حضور رايت را در فرآيند طراحي جديد طراحی نشان دهد و ابتکار رايت جابه‌گاه خود را در این روند بپيدا کرده است.

8. مطالعات تجريبي داخلي پيرامون بكارگيری تکنولوژی

در طراحی و ترمیم مشراید

برای تهیه تراپه شناخته شده ترمیمی (در مراحل مختلف) با بکارگري تکنولوژی یک مطالعه تجريبي با 15 طراح و معمار كه همگي از آموزش علمي دانشگاه معماري و شهرسازي دانشگاه علم و صنعت ايران بودند، توسط نگارشگان صورت گرفت كه نتياج

جدول مربوط به سوالات 1 و 2

<table>
<thead>
<tr>
<th>سوال</th>
<th>پلاي</th>
<th>غيرپلاي</th>
</tr>
</thead>
<tbody>
<tr>
<td>سوال 1</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سوال</th>
<th>پلاي</th>
<th>غيرپلاي</th>
</tr>
</thead>
<tbody>
<tr>
<td>سوال 2</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
نهادهای مربوط به سوال ۱ و ۲

جدول مربوط به سوال ۳

<table>
<thead>
<tr>
<th>سوال</th>
<th>بسیار زیاد</th>
<th>متوسط</th>
<th>زیاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۱</td>
<td>۰</td>
<td>۱</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

نمودارهای مربوط به سوال ۳

پاسخ‌هایی دریافتی از نمودارها (در جواب به سوال ۴ پرسش‌هایی)

نشان می‌دهد که میزان استفاده معمولان قبل از ورود به مراحل اصلی طراحی به طور خاص عیان در مرحله اعداد به چه میزان است. پاسخ دیدگان معنادیده که بیشترین میزان استفاده معمولان از رایانه قبل از ورود به طراحی در ازا و راندو است و رایانه در این مورد بیشترین استفاده را دارد و معمولان می‌توانند ایده‌های خود را توسط رایانه به بهترین شکل از آن در مرحله بعد رایانه در نشان دادن عملکردی می‌تواند برای تأثیر بسیار زیادی داشته باشد (در مرحله قبل از ورود به طراحی) و استفاده

جدول مربوط به سوال ۴

<table>
<thead>
<tr>
<th>سوال ۴</th>
<th>بسیار زیاد</th>
<th>متوسط</th>
<th>زیاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترسیم نمودارها</td>
<td>۱</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>ترسیم طرح‌های ها</td>
<td>۶</td>
<td>۲</td>
<td>۰</td>
</tr>
<tr>
<td>نشان دادن عملکردی</td>
<td>۰</td>
<td>۲</td>
<td>۰</td>
</tr>
<tr>
<td>اداه و راندو</td>
<td>۰</td>
<td>۱</td>
<td>۴</td>
</tr>
</tbody>
</table>
نمودارهای مربوط به سوال ۴

در جواب به سوال ۵، با توجه به نمودارهای زیر در مورد میزان استفاده طراحان و معماران از ابزارهای و رسانه‌ها، به طور کل می‌توان به این نتیجه رسید که هنوز جایگاه قلم و کاغذ با یکدیگر است. به‌طور کلی در مورد استفاده از ابزار طراحی جایگاه ابتدا و (Lowson) در تابید نظر می‌باشد که معمارین در طراحی بالاترین جایگاه است و معمارین از ابزار جهت انتقال تصاویر و ایده‌های خود به‌طور بیشتری بهره می‌برند. نتایج این آزمون نشان داد که میزان استفاده از قلم و کاغذ توسط معماران در فراکشی طراحی بسیار زیاد است. این امر باعث می‌شود که ابزار در رسانه‌های معماران برای معماران مورد استفاده مستمر باشد.

جدول مربوط به سوال ۵

<table>
<thead>
<tr>
<th>سوال ۵</th>
<th>پسیار کم</th>
<th>متوسط</th>
<th>زیاد</th>
<th>پسیار زیاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>قلم و کاغذ</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>مراجع بصری</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>رایانه و نرم‌افزار</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>رنگ و وسایل رادیو</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
نمودارهای مربوط به سوال ۵

در طراحی معماری هستند و استادم، گروه معماری علم و صنعت تأثیر آنها را زیاد دانسته‌اند و پس از همه اینجا نیمی از پاسخ دهندگان تأثیر رایانه و نرم‌افزار را در افزایش قدرت طراح در فرآیند طراحی زیاد ارزیابی نموده‌اند که از بقیه انتخاب پایین‌تری را کسب نموده است.

تمامی پاسخ دهندگان به سوال ۶ بررسی‌شده‌اند با این موضوع موافقت که خلاصه فرد مهم‌ترین ابزار در افزایش قدرت طراح در فرآیند طراحی معماری است و این مسئله خود توجه به خلاصه طراحان را در فرآیند طراحی می‌طلبد. بعدها از خلاصه فرد، فضای مناسب و ابزارهای دستی و تصویری ابزارهای مهمی در افزایش قدرت طراحان

جدول مربوط به سوال ۶

<table>
<thead>
<tr>
<th>سوال ۶</th>
<th>فضای مناسب</th>
<th>ابزار دستی و تصویر</th>
<th>خلاصه فرد</th>
<th>رایانه و نرم افزار</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیشتر کم</td>
<td>1 2 0 8 2</td>
<td>0 2 0 8 4</td>
<td>0 0 0 0 14</td>
<td>3 4 0 7 0</td>
</tr>
</tbody>
</table>
نمودارهای مربوط به سوال ۶

تقریباً همه پاسخ دهندگان به سوال ۷ معتقدند که رایانه‌ها در فرآیند طراحی بیشترین کمک را جهت ترسیم نقشه به طراحان معمولی می‌کنند. اکثریت انسان‌های معمولی دانشگاه علم و صنعت بیشترین کمک را آنها را به معماران در ارائه تصاویر و ترسیم‌های مخلوط (در فرآیند طراحی) می‌دانند. با توجه به نمودارهای زیر می‌توان نتیجه گرفت که پاسخ دهندگان بیشترین میزان کمک را به طراحان به ترتیب در ترسیم نقشه‌ها، ارائه تصویر و...

جدول مربوط به سوال ۷

<table>
<thead>
<tr>
<th>سوال ۷</th>
<th>بسیار کم</th>
<th>بسیار متوسط</th>
<th>بسیار زیاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترسیم نقشه</td>
<td>0</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>ارائه تصویر و ترسیم‌های مختلط</td>
<td>0</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>انتقال منابع اسکیپس و ترسیم‌ها</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>ارائه نمونه‌های طراحی مناسب</td>
<td>0</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>
جدول مربوط به سوال ۸

<table>
<thead>
<tr>
<th>سوال ۸</th>
<th>بسیار کم</th>
<th>کم</th>
<th>متوسط</th>
<th>زیاد</th>
<th>بسیار زیاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>هنگام جمع اوری ایده‌ها</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>زمان ترسیم نشان‌های اسرپاها</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>هنگام ترسیم نشان‌های اسکسپاها</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>پس از شکل گیری طرح مفهومی</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

نمودارهای مربوط به سوال ۷

با تحلیل نمودارهای زیر، در پاسخ به سوال ۸، می‌توان به این نتیجه رسید که ممکن است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح مفهومی و نهایتاً در هنگام جمع اوری ایده‌ها می‌دانند و این بدانین است که هر چه زمان اینهایه در یک همگی اینهایه حتی می‌توانیم اینهایه ارائه‌دهنده، در زمان هنگام ترسیم نشان‌های اسکسپاها، پس از شکل‌گیری طرح
نمودرهای مربوط به سوال 8

۹. نتیجه و جمع بندی

تجربه داخلی نکات زیرات را به ما کوشش می‌کند که در حالیکه کسب و کار و شرایط جالحاج ما و نگاه معماران نیز مشابه اگاه می‌باشد. از آن و عقلانیت به نشان از این افراد در آن طرح در فرآیند طراحی معماری است. این مدل الگوی خود توجه به خلاقیت طراحی را در فرآیند طراحی می‌طلبد. این مدل، نکته ای را پدید آورد: شود و آن انگیزه، نرم افزار فنی جدید باشیستی با توجه به خلاقیت فرد ایجاد شود و به این امکان پیش‌رفت در جهت آینده افکارش دهنده که منانشان نرم افزاری مثل CAD باشند. این افراد در فرآیند طراحی معماری برای امکان ایجاد مناسب نرم افزار طراحی معماری کمتر با آن درگیری، اینکه مهندسان کامپیوتر خصوصا با گرافیک نرم افزار ایران کمتر به برنامه‌نویسی
سال‌های اخیر و با توجه به تغییرات و نظریه‌های فنی‌های طراحی جدید دیده‌ایم که معمولاً در تجربه‌ها نشان داده که بررسی‌های حاضر در مبانی و علم جدید رابطه انسان و فناوری مقدمات طراحی و راهبردهای دیگر انجام انجام‌پذیر است. به این ترتیب، تحقیق‌های مبنی بر تجربیات طراحی و اجرای آن در این زمینه به‌شکلی گزارش و مورد بررسی قرار می‌گیرد.

درمانی و شاید همین موضوع باشد که این امر نتایج فاصله طراحی مکانیکی که اگر از نظر آن‌ها و علوم جدید رابطه انسان و فناوری مقدمات طراحی ناشناخته‌اند حتی به‌وسط آن‌ها به‌رافتم نیاز دارد. این بحث در مورد بررسی‌های راهبردی و جامعه و به ویژه در مطالعات و توسعه نیازمند به نیازمندی‌ها، انتخاب و بررسی از آن‌ها، به‌دست آورده‌ایم.

بازه‌های زمینه ارتباطی در جزوه‌های قابل تصور، اسکیپ و آن‌ها اشکال برقراری که می‌تواند و چگونه می‌توان از این‌ها به‌رفتارهای برای راه‌های و راه‌پیمایی با مقیاس‌ها و فاصله‌ها، و غیره می‌تواند و مدل‌های هم‌زمان با اندازه‌گیری نتایج و انتخاباتی را با این‌ها به‌ویژه با مهارت و شناخت در زمینه‌ها و اهداف و نمودارهای علمی نشان داد که یک تکنولوژی در این زمینه‌ها بسیار مقداری و موفق و خواهد شد.

متن

پیوست 1. سؤالات بررسی‌نامه

1- آیا رایانه‌های موجود در فرآیند طراحی مفهومی موضوع واقع شده؟

2- به نظر شما، رایانه‌های موجود در فرآیند طراحی مفهومی موضوع واقع شده؟

3- رایانه‌ها تا چه میزان می‌توانند تبادل طراحان را در روند طراحی برآورده کنند?

4- مزیت استفاده معماران از رایانه‌بیش از جف‌پردازی اصلی طراحی (در طول مرحله طراحی مفهومی) (در هر زبان) زیر به چه میزان است؟

5- طراحان در فرآیند طراحی رسانه‌های وابسته به چه میزان استفاده می‌کنند؟

6- چگونه کمک می‌کند به چه میزان می‌توانند قدرت طراح را در طراحی معماری بیشتر نمایند؟
راهانه در هرکدام از گزینه‌های زیر، به چه میزان می‌تواند شما را برای رسیدن به خواسته‌های طراحی‌تان پایدار نماید؟

- ترسیم نقشه
- ارائه تصویرها و ترسیم‌های مختلف
- انتقال مناسب اسکپس‌ها و ترسیم‌های به راهانه
- ارائه نمونه‌های طراحی مناسب و مرتبی با پرورش

اهتمام حضور راهانه در روند طراحی معمایی در هرکدام از مراحل زیر ناچیز می‌باشد؟

- هنگام جمع‌آوری ایده‌ها
- بعد از طراحی پلاک‌ها و... زمان ترسیم نقشه‌های اصلی
- هنگام ترسیم نمودارها (دبی‌گرافی) و ترسیم اسکپس‌ها
- پس از شکل‌گیری طرح های مفهومی

7-7