تدوین متدولوژی ارزیابی پارامترهای مؤثر بر تفاوتی سفرهای مسافری هوایی در ایران

شهریار افندزاده و امیرمسعود رحیمی

چکیده: تحلیل رفتار سفرهای بین شهری می‌تواند بر ایشانی تفاوتی سفرهای فرمی، نهایت آنچه در روش کلاسیک تحلیل تفاوتی سفرهای بین شهری وجود دارد، تحلیل رفتار سفرهای بین شهری را اکنون بررسی می‌کند. یک شریف جایگزین برای مدل‌های مدل‌های 4 سفارتی استفاده از رفتار سفرهای تولیدی تجارت، توزیع سفر و تحقیق می‌شود و با کمک خود لل‌تیکسیه این مدل‌ها در آن است که به استفاده از یک انتخاب از پارامترهای مدل‌ولوژی جدیدی جهت ارزیابی پارامترهای مؤثر بر تفاوتی سفرهای هوایی جهت برکارگیری در مدل‌سازی تفاوتی سفرها ارائه شده است.

براساس متدولوژی ارائه شده در این مقاله، ایجاد اندازه‌گیری ورودی و خروجی جهت مدل‌سازی تفاوتی سفرهای انتخاب می‌شود. سپس با استفاده از تکنیک تحلیل عمومی یک تگی جدید از مدل‌های ساخته آمده بر اساس استفاده از تکنیک تحلیل عمومی و حصول نتایج آن، نسبت به ساخت یک مدل مستقیم تفاوتی سفرهای هوایی به شرح ریسگس در دو فرم اکثریت می‌شود. از مقایسه نتایج حاصل از مدل‌های ساخته شده بر اساس داده‌های حاصل از مدل‌ولوژی تحلیل عامل ارائه شده در این مقاله با داده‌های ساخته شده به روش گرگسون خلیق نتایج بهتر ضایعاتی حاصل است. با استفاده از این داده‌ها، مدل‌های ساخته شده در این مقاله به ورودی‌ها مدل‌سازی تفاوتی سفرهای هوایی نشان‌دهند موفقیت قابل ملاحظه‌ای روند در برآورد تفاوتی سفرهای هوایی در ایران است.

واژه‌های کلیدی: تفاوتی حجم و نقل هوایی، پارامترهای مؤثر بر تفاوتی سفرهای هوایی بین شهری.

1. مقدمه

تحقیقات در زمینه سفرهای بین شهری نیازمند درک الولوژی سفر و نظر سیستمی و شرایط بوده و اینگونه تحقیقات آنان در زمینه انتخاب پکنی از بین سه‌گانه موجود یا بالقوه نظرات اصولی شخصی آن‌ها به بخش روند سفرهای هوایی و پارامترهای مؤثر بر تفاوتی سفرهای هوایی مدل‌سازی قطعات این سفرهای بین شهری نیز همانند اثر تکنیک تفاوتی سفرهای شریف به روش کلاسیک مدل‌های 4 سفارتی و مدل‌های مستقیم اکنون به‌دست می‌آید. تحقیقات در مورد سفرهای بین شهری در 4 تکنیک مورد بررسی و بررسی سفرهای هوایی در این مقاله در تاریخ 85/12/85 در این جلد و در تاریخ 80/10/108 به‌دست می‌آید و نصیحت است. رسرسیه است. دکتر شهریار افندزاده، دانشکده دانشگاه علوم پزشکی مشهد، دانشگاه علوم و اماری امیرمسعود رحیمی، دانشکده دانشگاه حکمتیاری، دانشگاه علوم و اماری ایران، امیررسول رحیمی، دانشکده دانشگاه دانشگاه علوم، دانشگاه علوم و اماری ایران.
عوامل مؤثر بر تصادف سفرهای مسافر هواپیمایی بین شهری در کشور

در این مقاله با به‌نگار که از ارزیابی سفرهای مسافرایی بین شهری سیستم حمل و نقل هوایی چک شد و نظر اکتا بیاید و مقصد سفرها در داخل شبه تبعیین شده است و نواحی مراحل تردد سفر و تحقیق تفکیک حالت همبود و نه تفاوت جویانه و عوامل مؤثر سفر و انتخاب سفر است.

همنویسندگان و مشارکت‌گران سپاه هلاکت مؤثر بر ایجاد سفرهای بین شهری مسافری را چک کرده و محدود شرایط سفر در ارائه ایرادهای ارائه‌گی و نظر اکتا بیاید و نواحی مراحل تردد سفر و تحقیق تفکیک حالت همبود و نه تفاوت جویانه و عوامل مؤثر سفر و انتخاب سفر است.

گزینه‌های سیستمی مفتونی از مسافرت مسافری بر اساس اصول انتخابی علمی تا کنترل برگرفته شد، بنابراین، اگر جمله شکایت‌های استمراری کمی باشد و حساسیتی است که بتوسط ویژگی‌های ممکن، بهبود شنیده معمول تعیین سفرهای (با زبان گفتی) و معتقدی بر تغییری این سفرهای مسافرتی استریوتیبی وضع، داخل، مسافرت مسافری تعیین شکل قطعی (باینگکتی) استفاده شده و نواحی مراحل تعریف شده است و نیاز به اعمال. 8.

8- Stubbs et al

1- Trip Generation
2- Trip Distribution
3- Modal Split
4- Traffic Assignment
5- Domenico et al
6- Timberlake
7- Keshamoun-Wad Medani Corridor
3- متدولوژی ارزیابی عوامل مؤثر بر تقاضای سفرهای مسافری هواپیما در ایران

در این مقاله با استفاده از تکنیک تحلیل عاملی یک متغیری بر اساس مدل جهت ارزیابی متغیرها و کاهش داده‌ها از ۷ متغیر اصلی به ۴ متغیر جدید ایجاد شد. تحلیل عاملی مدل واریانس تحلیلی کلی بر اساس مجموعه‌ای از تکنیک‌های پیشرفته تجزیه و ا marginBottom: 0; padding: 0;
در مرحله اول، استخراج عناصر از ماتریس همگستگی با استفاده از یکی از شیوه‌های انجام تحلیل عامل (مثال: انجام تحلیل عامل در فوق) نتایج را بپردازیم.

4- Eigenvalue
5- Scree
6- Quartimax
7- Varimax
8- Equamax
3- Bartlett’s Test of Sphericity

\[\chi^2 = -\frac{(n-1) - 2p^2 + 5p}{6} \]

in which:

- \(n \): Number of cases
- \(p \): Number of variables

KMO

\[KMO = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} r_{ij}^2}{\sum_{i=1}^{N} \sum_{j=1}^{N} r_{ij}^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}} \]

where:

- \(r_{ij} \): Correlation coefficient between variables \(i \) and \(j \)
- \(a_{ij} \): Average of the correlation coefficients between variables \(i \) and \(j \)

To conduct Bartlett’s Test of Sphericity, the null hypothesis is that the correlation matrix is an identity matrix, and the alternative hypothesis is that the correlation matrix is not an identity matrix. The test statistic follows a chi-square distribution with \((N-k) \times (N-k) \) degrees of freedom, where \(N \) is the number of variables and \(k \) is the number of variables with non-zero variance.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy

\[KMO = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} r_{ij}^2}{\sum_{i=1}^{N} \sum_{j=1}^{N} r_{ij}^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}} \]

where:

- \(r_{ij} \): Correlation coefficient between variables \(i \) and \(j \)
- \(a_{ij} \): Average of the correlation coefficients between variables \(i \) and \(j \)

KMO values range from 0 to 1, with values greater than 0.7 generally considered to indicate adequate sampling for factor analysis.

4- Interpretation

The KMO and Bartlett’s test results indicate that the data are suitable for factor analysis. The KMO value of 0.739 and the Bartlett’s test significance value of 0.000 suggest that the data have adequate sampling adequacy for factor analysis.

The results indicate that there are 4 factors that can explain the variance in the data. These factors can be used to reduce the number of variables in the analysis and to identify underlying patterns in the data.
شکل ۱. فلوجارت پیشنهادی جهت ارزیابی عوامل متأثر بر تفاوت‌های سفرهای مسافری هواپیمایی در ایران
جدول ۲. نتایج مانورس سریای خواندن عناصر در سه مرحله:

<table>
<thead>
<tr>
<th>نوع متغیر</th>
<th>سیرهای عروجی</th>
<th>سیرهای ورودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
<td>۰.۹۶۸</td>
</tr>
<tr>
<td>۲</td>
<td>۳</td>
<td>۰.۵۵</td>
</tr>
<tr>
<td>۳</td>
<td>۴</td>
<td>۰.۳۱۹</td>
</tr>
<tr>
<td>۴</td>
<td>۵</td>
<td>۰.۸۴۰</td>
</tr>
<tr>
<td>۵</td>
<td>۶</td>
<td>۰.۴۰۹</td>
</tr>
</tbody>
</table>

جدول ۳. ارزیابی نتایج آزمون‌های انجام شده بر روی مدل‌های کلی بر پارامترهای اولیه (روش هم متغیرها):

<table>
<thead>
<tr>
<th>نوع متغیر</th>
<th>سیرهای عروجی</th>
<th>سیرهای ورودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
<td>۰.۹۶۸</td>
</tr>
<tr>
<td>۲</td>
<td>۳</td>
<td>۰.۵۵</td>
</tr>
<tr>
<td>۳</td>
<td>۴</td>
<td>۰.۳۱۹</td>
</tr>
<tr>
<td>۴</td>
<td>۵</td>
<td>۰.۸۴۰</td>
</tr>
<tr>
<td>۵</td>
<td>۶</td>
<td>۰.۴۰۹</td>
</tr>
</tbody>
</table>

بررسی مانوسی عناصر خواندن یافته بر اساس جدول ۲ نشاندهد که می‌توان با ۲ عمل را می‌توان با صورت عناصر اول با نامن "پیشون" و "جمعین" و عناصر دوم با "نامن" "فیشون" و "جمعین" انجام داد. این تنظیم عناصر اصلی بدست آمده از مهم‌ترین نتایج این مطالعه، که با توجه به سیرهای ورودی مشابه یک گزارش تحریکی مساند حمایت و نقل سازگاری دارد. یکی از این مطالعات که تکنیک تحلیل عناصر مشابه انجام شده و تأثیرات پارامترهای مؤثر بر نقاط ارزش‌برداری در واقعیت این اشارات نمود خواهد بود.

در محطة بعدی مدل‌های مستقیم نقاط سیرهای هوایی بر اساس ۲ عناصر ورودی از نتایج تکنیک تحلیل عناصر (SE) و خصوصیات متغیر (MC) با روش رگرسیون خاتمی کلی سپر می‌گردد و مدل حاملی با
پایه مقایسه جدول ۳ نشان می‌دهد که ضرایب مدل‌های مبتنی بر پارامترهای اولیه (بروس، گروپر سیسی و چند متغیری به روش هم متعارض) در برخی از موارد معنی‌دار نیستند. این نتیجه از آن‌‌جمله درصدین و آنتسا نشان‌دهنده مقایسه کمتر از ۲ است که بین پارامتر و رابط مالک به ترتیب متغیرها است. در مدل‌های کلیه بانکی ضرایب گزارش شده در جدول ۲ قابل قبول تیبین کننده متغیر وابسته بود.

\[PATT = 109.057 + 132.373SE + 73.316MC \]
\[PAF = 108.903 + 133.962SE + 73.592MC \]

بررسی مقایسه جدول ۴ نشان می‌دهد که ضرایب مدل‌های مبتنی بر پارامترهای اولیه (بروس، گروپر سیسی و چند متغیری به روش هم متعارض) در برخی از موارد معنی‌دار نیستند. این نتیجه از آن‌‌جمله درصدین و آنتسا نشان‌دهنده مقایسه کمتر از ۲ است که بین پارامتر و رابط مالک به ترتیب متغیرها است. در مدل‌های کلیه بانکی ضرایب گزارش شده در جدول ۲ قابل قبول تیبین کننده متغیر وابسته بود.

جدول ۵. ارزیابی نتایج آزمون‌های انگام شده بر مدل‌های مبتنی بر پارامترهای اولیه (روش گام به گام)

<table>
<thead>
<tr>
<th>نوع آزمون</th>
<th>مدل‌های ارزیابی</th>
<th>مدل‌های ارزیابی</th>
<th>مدل‌های ارزیابی</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرم‌سنجی</td>
<td>امزه F</td>
<td>امزه F</td>
<td>امزه F</td>
</tr>
<tr>
<td>کلی متغیر وابسته</td>
<td>سطح معنی‌داری</td>
<td>سطح معنی‌داری</td>
<td>سطح معنی‌داری</td>
</tr>
<tr>
<td>(مشتق</td>
<td>امزه F</td>
<td>امزه F</td>
<td>امزه F</td>
</tr>
<tr>
<td>هم بین</td>
<td>۴۹/۹۹</td>
<td>۴۹/۹۹</td>
<td>۴۹/۹۹</td>
</tr>
<tr>
<td>بین</td>
<td>۷۴/۲۳</td>
<td>۷۴/۲۳</td>
<td>۷۴/۲۳</td>
</tr>
<tr>
<td>بین</td>
<td>۴۹/۹۹</td>
<td>۴۹/۹۹</td>
<td>۴۹/۹۹</td>
</tr>
<tr>
<td>ضرایب تیبین</td>
<td>(R²)</td>
<td>(R²)</td>
<td>(R²)</td>
</tr>
<tr>
<td>دوربین و آنتسا</td>
<td>۰۴/۰۴</td>
<td>۰۴/۰۴</td>
<td>۰۴/۰۴</td>
</tr>
</tbody>
</table>

جدول ۶. ارزیابی نتایج آزمون‌های انگام شده بر مدل‌های مبتنی بر پارامترهای اولیه (روش گام به گام)

<table>
<thead>
<tr>
<th>نوع آزمون</th>
<th>مدل‌های ارزیابی</th>
<th>مدل‌های ارزیابی</th>
<th>مدل‌های ارزیابی</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرم‌سنجی</td>
<td>امزه F</td>
<td>امزه F</td>
<td>امزه F</td>
</tr>
<tr>
<td>کلی متغیر وابسته</td>
<td>سطح معنی‌داری</td>
<td>سطح معنی‌داری</td>
<td>سطح معنی‌داری</td>
</tr>
<tr>
<td>(مشتق</td>
<td>امزه F</td>
<td>امزه F</td>
<td>امزه F</td>
</tr>
<tr>
<td>هم بین</td>
<td>۴۹/۹۹</td>
<td>۴۹/۹۹</td>
<td>۴۹/۹۹</td>
</tr>
<tr>
<td>بین</td>
<td>۷۴/۲۳</td>
<td>۷۴/۲۳</td>
<td>۷۴/۲۳</td>
</tr>
<tr>
<td>بین</td>
<td>۴۹/۹۹</td>
<td>۴۹/۹۹</td>
<td>۴۹/۹۹</td>
</tr>
<tr>
<td>ضرایب تیبین</td>
<td>(R²)</td>
<td>(R²)</td>
<td>(R²)</td>
</tr>
<tr>
<td>دوربین و آنتسا</td>
<td>۰۴/۰۴</td>
<td>۰۴/۰۴</td>
<td>۰۴/۰۴</td>
</tr>
</tbody>
</table>

- Stepwise
مراجع

5. نتیجه گیری
با استفاده از مدل‌الگویی پیشنهادی در این مقاله برای ارزیابی انتخاب پرداخته‌گر مدل‌الگویی تاسیساتی سفرهای هواپیما گزارش می‌شود که برای تایید پارامترهای بیشتر و نهایتاً گزینش تعداد محدودی عامل اصلی از آنها به نتایج مناسب‌تر جهت مدل‌الگویی تاسیساتی سفرهای هواپیما کمک کرده است. در این مقاله، در ابتدا 6 پارامتر مؤثر بر تاسیساتی سفرهای هواپیما تعیین شده و همچنین از چهار کیفیت مدل‌الگویی پیشنهادی نشان داده شده است که عامل اصلی از آنها به نتایج مناسب‌تر جهت مدل‌الگویی سفرهای هواپیما کمک کرده است. در این مقاله، برای تایید پارامترهای بیشتر و نهایتاً گزینش تعداد محدودی عامل اصلی از آنها به نتایج مناسب‌تر جهت مدل‌الگویی سفرهای هواپیما کمک کرده است. در این مقاله، برای تایید پارامترهای بیشتر و نهایتاً گزینش تعداد محدودی عامل اصلی از آنها به نتایج مناسب‌تر جهت مدل‌الگویی سفرهای هواپیما کمک کرده است.