ارایه یک رابطه تحلیلی برای ناحیه انتقالی در توزیع سرعت در آبراهه‌های با پوشش گیاهی انعطاف‌ناپذیر مستغرق

گزارش فنی
جمال محمد ولی سامانی و مهی شناختی

چکیده: در مجاری با پوشش گیاهی انعطاف‌ناپذیر و مستغرق، تخصیص مقدار سرعت و دیتی حاجی آزمایشی می‌باشد. با توجه به جریان آب، توزیع سرعت در این گونه آبراهه‌ها به سه بخش قابل تقسیم می‌باشد: بخش پوک‌آور با تخلیه که به که که آبراهه تندیک است و دارای سرعت پوک‌آور می‌باشد. بخش مویی و دو بخش میانی (انتقالی) که تحت تأثیری مسید رویانی قرار می‌گیرد. در این مجاری روش‌های موجدری بودن مقدار دیتی و سرعت بر اساس سرعت پوک‌آور می‌باشد. در این مقاله روش‌های تحلیلی جهت محاسبه عمق و توزیع سرعت در ناحیه انتقالی مورد بررسی مانند نتایج آن‌گونه گیرده است. نتایج بدست آمده حاکی از تطابق خوب تابع این مدل با نتایج داده‌های آزمایش‌گاهی است.

کلید واژه‌ها: توزیع سرعت، ناحیه انتقالی، رابطه تحلیلی، آبراهه‌های با پوشش گیاهی

1. مقدمه

در دهه‌های اخیر به‌پژوهش و تحقیقاتی در این زمینه، جریان در پوک‌آور و سرعت در پوک‌آور و مرطوب و خرس افتراقی باعث شده است. درک ناحیه انتقالی گیاهی روی شرایط مختلف جریان در طرح‌های مهندسی رودخانه و اهمیت شرایط خروج‌دار است. پوشش گیاهی مقدار در برابر جریان را افزایش داده و بخش افزایش سطح آب می‌گردد. این اثر پوشش گیاهی را توزیع سرعت در مقطع جریان نشان می‌دهد. بطری شکم‌یاد دقت محاسبات مربوط به آب‌سازی در مدیون را افزایش می‌دهد. همچنین در مورد جریان‌بند بر روی مناطق جنگلی و پوشش گیاهی، توزیع سرعت درون پوشش گیاهی از حالت مسابه به حالات مکرر تبدیل می‌شود. توزیع سرعت درون پوشش گیاهی می‌تواند به تبع‌های وارد بیان گردد. تحقیقات مختلف در مورد توزیع سرعت درون پوشش گیاهی انجام شده که در این تحقیق سرعت درون پوشش گیاهی می‌تواند موجب توزیع سرعت قرار گرفته است این مقاله توزیع سرعت در زیر سطح ناحیه پوشش گیاهی در سال 1985 توسط...

2. تحقیقات

در مطالعه گذشته که با اندازه‌گیری یک بنی‌الاساسی برای پوشش گیاهی انجام شد، که درصد توزیع برای سرعت متوسط در کاهش بسته بوده است. در این مطالعه به‌وسیله پوشش‌مانند انجام شد و نتیجه‌گیری شد که این فاکتور پوشش می‌تواند به‌کار یک از رسما را می‌تواند یک‌تا یک‌دستی شود. همچنین، این نتایج داده شد که...

3. نتایج و بحث

این مقاله در تاریخ 15/12/15 تیزی و در تاریخ 10/7/10 به تصویب نهایی رسیده است.

دکتر جمال محمد ولی سامانی، دانشگاه گوره سره‌سینی، آیت‌الله شکوفه samani_l@modares.ac.ir
مهدی شناختی، دانشجو دکتری گوره سره‌سینی، آیت‌الله شکوفه m_mazah@yahoo.com
2- نظریه حریان متقاطع و طول اختلاط پرانتل
با توجه به نظریه حریان متقاطع می‌توان نوشت:
\[\tau = \eta \frac{\partial u}{\partial y} \]
که در آن \(\tau \) تنش بریش در لایه‌های سطحی، \(\eta \) میزان افت و پرازی و \(\frac{\partial u}{\partial y} \) زنگیری الکتریکی (Eddy Viscosity) همچنین از رابطه طول اختلاط پرازی (Length Prandtl Mixing)
\[\eta = \rho L \left(\frac{\partial u}{\partial y} \right) \]
که در آن \(\rho \) جرم واحد حجم، \(L \) طول اختلاط پرازی و \(\frac{\partial u}{\partial y} \) زنگیری الکتریکی می‌باشد که

یکنواخت تحتانی با استفاده از رابطه تعادل نیروها در این منطقه قابل پیش‌بینی خواهد بود. در ناحیه پیکنواخت تحتانی رابطه: \(\frac{\partial P}{\partial x} = F_i \) باید برقرار باشد. که این قید در جهت \(F_i \) حرکت مایع در جریان \(F_i \) نیروی درگ می‌باشد. بسته به نحوه تعیین \(F_i \) رابطه وسط متوان این رابطه را حل کرد و مقدار (سرعت پیکنواخت تحتانی) را به‌دست آورد.

با توجه به اینکه ثباتی که در قسمت انتقالی و نوشته رابطه تعادل نیروها افتی برای رابطه زیر بدست می‌آید:
\[(y + dy) + F_i(dy + dx) + P(x + dx))dy - F_i dxdy = 0 \]

که در آن:
\[\tau(y + dy) + F_i(y + dy) = \frac{\partial P}{\partial x} dy + O(dy^2) \] \[(1)\]
\[P(x + dx) - P(x + dx) = -\frac{\partial P}{\partial x} dx + O(dx^2) \] \[(2)\]

که در آن \(O \) تنش در حالت گازی برای این وابسته است. از طرفی با توجه به بسط سری تیرویر برای و روابط زیر بدست می‌آید:
\[\tau(y + dy) - \tau(y) = \frac{\partial \tau}{\partial y} dy + O(dy^2) \] \[(3)\]
\[P(x + dx) - P(x) = -\frac{\partial P}{\partial x} dx + O(dx^2) \] \[(4)\]

به همراه که باید نشان دهد که در حالت گازی برای این وابسته است. از طرفی با توجه به بسط سری تیرویر برای و روابط زیر بدست می‌آید:
\[\frac{\partial \tau}{\partial y} - \frac{\partial P}{\partial x} = F_i \] \[(5)\]

به همراه که باید نشان دهد که در حالت گازی برای این وابسته است. از طرفی با توجه به بسط سری تیرویر برای و روابط زیر بدست می‌آید:
\[\frac{\partial \tau}{\partial y} - \frac{\partial P}{\partial x} = F_i \] \[(6)\]

به همراه که باید نشان دهد که در حالت گازی برای این وابسته است. از طرفی با توجه به بسط سری تیرویر برای و روابط زیر بدست می‌آید:
\[\frac{\partial \tau}{\partial y} - \frac{\partial P}{\partial x} = F_i \] \[(7)\]
اراوه یک راپته تحلیلی برای ناحیه انتقالی در توزیع سرعت در آبراهه‌های با پوشش گیاهی انگطاس‌ناپذیر مستغرق

با چاپی‌کاری روابط (10)، (12) و (14) در رابطه (4) معادله پروپیل

\[\rho k^2 d \frac{\partial y}{\partial x} = \rho \frac{\partial^2 y}{\partial x^2} + \rho \frac{\partial a}{\partial x} = \frac{\partial b}{\partial x} = \frac{\partial c}{\partial x} = 0 \]

(14)

\[\kappa^2 d \frac{\partial y}{\partial x} = \rho \frac{\partial^2 y}{\partial x^2} + \frac{\partial b}{\partial x} = \frac{\partial c}{\partial x} = 0 \]

(15)

با حل مدل پراگراف (16) در قسمت انتقالی در هر عمق، سرعت بدست می‌آید. برای حذف این مدل به شرایط مزی نیاز می‌باشد.

2-3. شرایط مزی

\[\text{شدا که در آن } \kappa \text{ نسبت به } y \text{ در رابطه (8) در } (9) \text{ رابطه نش بریش پوشش گیاهی } \]

(8)

\[\text{شدا که در آن } \kappa \text{ نسبت به } y \text{ در رابطه (9) نسبت به } y \text{ در رابطه (8)} \text{ } \]

(9)

2-2. توزیع سرعت در ناحیه انتقالی

\[\text{شدا که در آن } u \text{ نسبت به } y \text{ در رابطه (8) در } (10) \text{ نش بریش پوشش گیاهی } \]

(10)

\[\text{شدا که در آن } u \text{ نسبت به } y \text{ در رابطه (8) در } (11) \text{ نش بریش پوشش گیاهی } \]

(11)

\[\text{شدا که در آن } u \text{ نسبت به } y \text{ در رابطه (8) در } (12) \text{ نش بریش پوشش گیاهی } \]

(12)

\[\text{شدا که در آن } u \text{ نسبت به } y \text{ در رابطه (8) در } (13) \text{ نش بریش پوشش گیاهی } \]

(13)
\(d = \int \left(\frac{2}{3} C^M u^2}{g} (\frac{u^{M+1}}{M + 1} - V^M_s (u - V_s))^{3/2} f \right) \, du \)

(23)

\(\frac{du}{dt} = t \)

(24)

\(\frac{dt}{du} = 2 \frac{dt}{du} = 2^3 \frac{dt}{du} \)

(25)

\(\delta = \frac{\sum V_{\text{observed}} - V_{\text{estimated}}}{M} \)

(26)

\(M = 2.02 \)

(27)

\(V = \frac{C^M u^2}{g} (\frac{u^{M+1}}{M + 1} - V^M_s (u - V_s))^{3/2} \)

(28)

\(y = \int dy = \int \left(\frac{2}{3} C^M u^2}{g} (\frac{u^{M+1}}{M + 1} - V^M_s (u - V_s))^{3/2} f \right) \, du \)

(29)
ارایه یک رابطه تحلیلی برای ناحیه تغییرات در توزیع سرعت در ابراهیمهای با پوشش گیاهی انعطاف‌ناپذیر مستغرق

class diagram

شکل ۵ مقایسه سرعت‌های اندام‌گیری شده و محاسبه شده در
آزمایشات

شکل ۶ مقایسه سرعت‌های اندام‌گیری شده و محاسبه شده در
کل آزمایشات

شکل ۷ مقایسه ضخامت‌های انتقالی در حالت‌های مشاهده شده و
محاسبه شده در آزمایشات بکار رفته برای میزان مدل

شکل ٨ مقایسه ضخامت‌های انتقالی در حالت‌های مشاهده شده و
محاسبه شده در کل آزمایشات

نتایج و تأیید نتایج

۵. نتایج و تأیید نتایج

توزیع سرعت در جریان مستغرق در ابراهیمهای با پوشش گیاهی
انعطاف‌ناپذیر حائز اهمیت می‌باشد. علاوه بر ابراهیمه‌ها نمونه‌ای نوجوان را می‌توان در حرکت باد بر روی پوشش‌های گیاهی و
چنگال‌ها عبانی نمونه و نیز توزیع سرعت مذکور به همین منطقه
ایکنواخت نشان خواهند داد. انتقال و اکتاقشی فوقال تقییم می‌شود. در
توزیع سرعت مذکور ممکن است ناحیه تغییرات به همین منطقه به
انتقالی می‌یابد. منطقه انتقالی در اثر تأثیر جریان برای پوشش
گیاهی به درون آن بوده و روابط معمول توزیع سرعت در
برای مدل شمایی کند.
