Abstract: Several sampling distribution properties of the estimator for Cpk are presented under the assumption that the data are normal, independent and identically distributed. In this paper using these assumptions, the expectation, variance and skewness are calculated by statistical methods, since the sampling distribution is weakly skewed, it is concluded that a symmetric interval estimator for Cpk might be reasonable. Also a symmetric interval estimator has been developed.

\[C_{pk} = \frac{USL - LSL}{6\sigma} \]

\[C_{p} = \frac{USL - LSL}{6\sigma} \]

برآورد فاصلهای ضريب كارایی فرآیند

بریوش پهمنی، سید محمدتقی فاطمی قمی و مسعود نیکوکار زنجانی

چکیده: چند مورد از خواص توزیع نمونه‌ای برآوردهای \(\hat{C}_{pk} \) و \(\hat{C}_{p} \) بررسی شده است. نرمال بودن، استقلال و همتوزیع بودن داده‌های از نظر مقدار امید ریاضی و واریانس و چولگی \(\hat{C}_{pk} \) به روش آماری محاسبه شده است. نظر به اینکه توزیع نمونه‌ای چولگی ضعیف‌تری دارد می‌توان نتیجه گرفت که برآوردها فاصله‌ای متقارن \(\hat{C}_{pk} \) منطقی است. نیز برآوردگر فاصله‌ای متقارن طراحی شده است.

واژه‌های کلیدی: حدود معنی‌داری، توزیع نرمال، توزیع نمونه‌ای، ضریب کارایی فرآیند، برآورد، حدود نمونه‌ای، چولگی

1. مقدمه

در اغلب موقعیت‌های تولید محصولات کارایی فرآیند بطور کلی، کمیت آرای گردید. یکی از روشهایی که می‌توان برای اطمینان از کارایی فرآیند استفاده کرد نسبت کارایی فرآیند (ProcessCapabilityRatio) ایجاد شده است.
پروآورد فاصله‌ای ضریب کارایی قرار گرفته، سید محمد تیم فاطمی فمی و مسعود نیکوکار زنجانی

 تعريف فاصله‌ای پهن‌گو�ی‌مرمی کاتز و جانسون [10] انرژی شده‌اند. در این مثال ضریب دگرگمه نیز برای محاسبه کارایی قرار گرفته است. در جدول زیر نمود.

\[C_{pk} = \min \left[\frac{USL - \mu}{3\sigma}, \frac{\mu - LSL}{3\sigma} \right] \tag{3} \]

این ضریب کارایی کاربرد گسترده‌ای در صنعت دارد. ان ضریب به حدود تقریبی طبیعی (\(\sigma\)) و حدود معنی‌داری باستانی‌است. \(\hat{C}_{pk}\) هر دوی برای \(\hat{C}_{pk}\) بیشتر بوده و استحکام‌نامی براساس آن مشکل است. \(\hat{C}_{pk}\) را با استفاده از فرمول‌های ایام‌بندی و واریانس و بایکس (نه بر اساس توسعه آن) به صورت \(\hat{C}_{pk} = k \sigma_{pk} \) ارائه می‌دهد. در نهایت، \(k = 2\) و \(k = 3\) می‌گردد که تغییرات از نمونه‌های به نمونه‌دهی می‌تواند کامل‌تر باشد حتی اگر قرینه با تغییرات اساسی مواجه نگردد.

\[C_{pk} = \min \left(\frac{USL - X}{3\sigma}, \frac{X - LSL}{3\sigma} \right) \tag{4} \]

به طوری‌که ملاحظه شد \(C_{pk}\) بصورت باطلی در این مقاله مانند دریافت و محاسبه شده. \(\sigma_{pk}\) را به ضریب دگرگمه \(\sigma\) مانند دریافت و محاسبه شده. \(X\) را به روش ایام‌بندی به صورت زیر می‌تواند \(C_{pk}\) را بصورت زیر بدست آورد:

\[\hat{C}_{pk} = \frac{USL - LSL}{3\sigma} - \frac{\left(USL - \mu \right) + \left(LSL - \mu \right)}{6\sigma} \tag{5} \]

از طرفی می‌کنیم:

\[X = \frac{\left(n-1 \right) S^2}{\sigma^2} \sim \chi^2_{n-1} \Rightarrow \frac{\sqrt{\sum \chi^2}}{\sigma} \sim \chi_{n-1} \]

\[S \sim \sigma \Rightarrow \frac{\sqrt{\sum X^2}}{\sqrt{n-1}} \sim \frac{\sigma_{\chi_{n-1}}}{\sqrt{n-1}} \]

\[\text{کنار گرفته را بصورت باطلی تغییر نمود:} \]

\[C_{pk} = \min \left(\frac{USL - X}{3\sigma}, \frac{X - LSL}{3\sigma} \right) \]
\[E \left(\hat{C}_{pk} \right) = \frac{1}{6} \left[\frac{\sqrt{n-1}}{n} \frac{\Gamma \left(\frac{n-2}{2} \right)}{\Gamma \left(\frac{n-1}{2} \right)} \right] \]

\[\left[\frac{a}{\sigma} - \frac{\left(\frac{\mu-b}{\sigma} \right)}{\sqrt{n}} \right] \left(\frac{\gamma}{\sigma} \right) - 2 \left(\frac{\mu-b}{\sigma} \right) \left(\frac{\sqrt{n-1}}{n} \right) \]

\[\left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]

\[\text{بطوریهک وقتی } n \to \infty \text{ با کمک تقیی استرلنگ داریم:} \]

\[\Gamma \left(\frac{n-2}{2} \right) \left(\frac{n-1}{2} \right) - \frac{\sqrt{2}}{n} \left(n-1 \right) \]

\[\frac{\Gamma \left(\frac{n-2}{2} \right)}{\Gamma \left(\frac{n-1}{2} \right)} \left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]

\[\text{حال با استفاده از تغییر متغیرهای زیر بصورت:} \]

\[\epsilon = \frac{\sqrt{n} \phi \left(\frac{\mu-b}{\sigma} \right)}{\sigma} \quad \text{و} \quad \phi = \frac{\sqrt{n} \phi \left(\frac{\mu-b}{\sigma} \right)}{\sigma} \]

\[\text{و با جایگذاری اینها در رابطه امپریکی داریم:} \]

\[E \left(\hat{C}_{pk} \right) = \frac{\Gamma \left(n-2 \right)}{n \Gamma \left(n-1 \right)} \left(\frac{1}{2} \right) \left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]

\[\text{حال برای محاسبه } E \left(\hat{C}_{pk} \right) \text{ با استفاده از فرض نرمال بودن توزیع } X, \text{ ها داریم:} \]

\[X \sim N \left(\mu, \sigma^2 \right) \Rightarrow X \sim N \left(\frac{\mu \sigma^2}{n} \right) \Rightarrow X = \frac{b}{2} \left(\frac{\mu \sigma^2}{n} \right) \]

\[E \left(\hat{C}_{pk} \right) = \frac{\Gamma \left(\frac{n-2}{2} \right)}{n \Gamma \left(\frac{n-1}{2} \right)} \left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]

\[\text{و با جایگذاری اینها در رابطه } X, \text{ ها داریم:} \]

\[E \left(\hat{C}_{pk} \right) = \frac{\Gamma \left(\frac{n-2}{2} \right)}{n \Gamma \left(\frac{n-1}{2} \right)} \left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]

\[\text{که در آن } \phi \text{ تابع توزیع بسامد می‌باشد.} \]

\[\text{در رابطه } (5) \text{ مقدار } \frac{\mu \sigma^2}{n} \text{ که از جمع مربوط به حالت } X = 0 \text{ و عبارت } \text{دوم جمع مربوط به حالت} \]

\[\left(\frac{X}{n} - \frac{b}{2} \right) < 0 \]

\[\text{حال از روابط } (4) \text{ و } (9) \text{ داریم:} \]

\[E \left(\hat{C}_{pk} \right) = \frac{\Gamma \left(\frac{n-2}{2} \right)}{n \Gamma \left(\frac{n-1}{2} \right)} \left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]

\[\text{با کمک این توزیع داریم:} \]

\[E \left(\frac{1}{X} \right) = \frac{\Gamma \left(\frac{n-2}{2} \right)}{n \Gamma \left(\frac{n-1}{2} \right)} \left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]

\[\text{حال برای محاسبه } E \left(\hat{C}_{pk} \right) \text{ با استفاده از فرض نرمال بودن توزیع } X, \text{ ها داریم:} \]

\[E \left(\hat{C}_{pk} \right) = \frac{\Gamma \left(\frac{n-2}{2} \right)}{n \Gamma \left(\frac{n-1}{2} \right)} \left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]

\[\text{و با جایگذاری اینها در رابطه } X, \text{ ها داریم:} \]

\[E \left(\hat{C}_{pk} \right) = \frac{\Gamma \left(\frac{n-2}{2} \right)}{n \Gamma \left(\frac{n-1}{2} \right)} \left(\frac{\mu-b/2}{\sigma} \right) \left(\frac{1-2 \phi \left(\frac{\sqrt{n}}{\sigma} \phi \right) \left(\frac{b/2-\mu}{\sigma} \right) \right) - \frac{\mu-b/2}{\sigma} \]
\[C_{pk}^2 = \frac{a^2}{36S^2} - \frac{b - 2X}{1.8S^2} \]
\[C_{pk2}^2 = \frac{a^2}{36S^2} - 2a\left(\frac{b - 2X}{3.6S^2}\right) \]
\(E\left(C_{pk}^2\right) = E\left(\frac{a^2}{36S^2}\right) - 2aE\left[\frac{b - 2X}{36S^2}\right] \) \(\ldots E\left(\frac{b - 2X}{36S^2}\right) \) \((11) \) \[E\left(C_{pk2}^2\right) = E\left(\frac{a^2}{36S^2}\right) - \frac{n-1}{n-3}
\] \[\frac{1}{\sqrt{n-3}} \left[\sqrt{n-1} - \frac{1}{2} \Gamma\left(\frac{n-2}{2}\right) \right] - \frac{n-1}{2\sqrt{n}} \frac{1}{\sqrt{n}} \left[\sqrt{n-1} - \frac{1}{2} \Gamma\left(\frac{n-1}{2}\right) \right] \] \[(11) \) \[Var\left(C_{pk}\right) = \frac{a^2}{36S^2} - \frac{n-1}{n-3}
\] \[\frac{1}{\sqrt{n-3}} \left[\sqrt{n-1} - \frac{1}{2} \Gamma\left(\frac{n-2}{2}\right) \right] - \frac{n-1}{2\sqrt{n}} \frac{1}{\sqrt{n}} \left[\sqrt{n-1} - \frac{1}{2} \Gamma\left(\frac{n-1}{2}\right) \right] \] \[(11) \) \[Var\left(C_{pk2}\right) = \frac{a^2}{36S^2} - \frac{n-1}{n-3}
\] \[\frac{1}{\sqrt{n-3}} \left[\sqrt{n-1} - \frac{1}{2} \Gamma\left(\frac{n-2}{2}\right) \right] - \frac{n-1}{2\sqrt{n}} \frac{1}{\sqrt{n}} \left[\sqrt{n-1} - \frac{1}{2} \Gamma\left(\frac{n-1}{2}\right) \right] \] \[(11) \)
۵۹

با استفاده از تکنیک‌های مشابه برای محاسبه میانگین و واریانس داریم:

\[E\left(\hat{C}_p^3\right) = \frac{1}{216}\left(\frac{n-1}{2}\right)^3 \cdot \frac{\Gamma\left(\frac{(n-4)}{2}\right)}{\Gamma\left((n-1)/2\right)} \cdot \frac{\Gamma\left((n-2)/2\right)^2}{\Gamma\left((n-1)/2\right)^2} \left(\frac{c^2 + 2}{n}\right)^2 \] (31)

با جانگزدی در رابطه (۳۲) می‌توان با محاسبه نمود برای \(\hat{C}_{pk} \) انداده‌های نمونه بزرگ \(n \) ملاحظه می‌شود که توزیع چوگلی ضعیف دارد، به گونه‌ای که طبق روابط بدست آمده برای \(\hat{C}_{pk} \) واریانس در بخش‌های قبل ملاحظه شده که واریانس \(\hat{C}_{pk} \) (را به‌طور دوباره) تابعی از \(n \) است. لذا برای \(n \) کمتر از ۵۰ تغییرات بسته‌تری درد واقعی برای \(n \) مقدارهای بزرگ‌تر منظره شد، تغییرات بسته رفت هر کاهش می‌یابد.

\(\hat{C}_{pk} \) بر اساس خواص از قبلی نا از واریانس با پخش انداده‌های قابل برای \(\hat{C}_{pk} \) بطور زیر طراحی می‌شود:

\[\hat{C}_{pk} ± k\hat{\sigma}_{pk} \] (36)

که در آن \(k \) یک مقادیر ثابت و \(\hat{\sigma}_{pk} \) برآوردگر نموده‌ای انحراف معیار \(C_{pk} \) است.

۷. تجزیه و تحلیل و نتیجه‌گیری

در این بخش ابتدا برای تشخیص مطلقی که به‌خاطر بخش‌های ذکر شده مثال آورده می‌شود. سپس ثبت می‌شود گیرندازی لازم عمل خواهد امتداد گذاری (۱–۸) برای وضعیت از این آمده \(n \) باید توجه نمود که \(m \) برای مختلف موارد می‌تواند آخرین جدول تغییر نمود. بررسی این‌نگه نتیجه یا باید با واریانس برای نمونه‌های چوگلی به راست با \(b_1 \), \(b_2 \), \(g \) جدول به چپ و اکنون جدول مشابه چوگلی را برای بازی \(\hat{C}_{pk} \) تعیین نمود.

\[\beta = E\left[\hat{C}_{pk} - E\left(\hat{C}_{pk}\right)\right]^3 \] (32)

(۲۲)

که معیار بسته‌ای چوگلی توزیع از رابطه (۳۲) دریافت می‌شود:

\[\beta = E\left(\hat{C}_{pk}^3\right) - 3E\left(\hat{C}_{pk}^2\right)E\left(\hat{C}_{pk}\right) + 2E^3\left(\hat{C}_{pk}\right) \] (33)

\[\frac{E\left(\hat{C}_{pk}^3\right)}{\sigma_{pk}^3} = \frac{1}{216}E\left(\frac{1}{X^3}\right) \] (34)

\[\left\{a^3 E\left[a-b\right] + 3a E\left[(X-b)^3\right] - E\left[a-2X\right]\right\} \]
جدول شماره ۱

<table>
<thead>
<tr>
<th>\hat{C}_p</th>
<th>$n=25$</th>
<th>$n=50$</th>
<th>$n=100$</th>
<th>$n=150$</th>
<th>$n=200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/75</td>
<td>(0/52,0/98)</td>
<td>(0/59,0/91)</td>
<td>(0/64,0/86)</td>
<td>(0/66,0/84)</td>
<td>(0/67,0/83)</td>
</tr>
<tr>
<td>1</td>
<td>(0/69,1/31)</td>
<td>(0/79,1/21)</td>
<td>(0/86,1/14)</td>
<td>(0/88,1/12)</td>
<td>(0/9,1/10)</td>
</tr>
<tr>
<td>1/33</td>
<td>(0/91,1/75)</td>
<td>(1/05,1/61)</td>
<td>(1/14,1/52)</td>
<td>(1/17,1/49)</td>
<td>(1/20,1/46)</td>
</tr>
<tr>
<td>3</td>
<td>(1/37,2/63)</td>
<td>(1/58,2/42)</td>
<td>(1/71,2/29)</td>
<td>(1/77,2/33)</td>
<td>(1/8,2/2)</td>
</tr>
</tbody>
</table>

جدول شماره ۲

<table>
<thead>
<tr>
<th>\hat{C}_p</th>
<th>$n=25$</th>
<th>$n=50$</th>
<th>$n=100$</th>
<th>$n=150$</th>
<th>$n=200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/75</td>
<td>(0/40,1/10)</td>
<td>(0/51,0/99)</td>
<td>(0/59,0/91)</td>
<td>(0/62,0/88)</td>
<td>(0/64,0/86)</td>
</tr>
<tr>
<td>1</td>
<td>(0/53,1/47)</td>
<td>(0/68,1/32)</td>
<td>(0/78,1/22)</td>
<td>(0/82,1/18)</td>
<td>(0/85,1/15)</td>
</tr>
<tr>
<td>1/33</td>
<td>(0/71,1/95)</td>
<td>(0/91,1/75)</td>
<td>(1/04,1/62)</td>
<td>(1/10,1/50)</td>
<td>(1/13,1/43)</td>
</tr>
<tr>
<td>3</td>
<td>(1/06,2/94)</td>
<td>(1/37,2/63)</td>
<td>(1/57,2/43)</td>
<td>(1/65,2/35)</td>
<td>(1/70,2/30)</td>
</tr>
</tbody>
</table>

نومنه‌های تصادفی از یک توزیع ترمال μ, σ, n به دنبال ترکیب از \hat{C}_p برای هر نمونه تولید شدند. برای هر نمونه، میانگین، انحراف معیار و \hat{C}_p را محاسبه می‌سپارد. سپس بر اساس $k=3$ و $k=2$ محاسبه می‌شود:

<table>
<thead>
<tr>
<th>$k=3$</th>
<th>$n=50$</th>
<th>$n=100$</th>
<th>$n=150$</th>
<th>$n=200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>0/50</td>
<td>0/57</td>
<td>0/69</td>
<td>0/8 \n</td>
</tr>
<tr>
<td>1/14</td>
<td>0/44</td>
<td>0/54</td>
<td>0/65</td>
<td>0/8</td>
</tr>
<tr>
<td>1/05</td>
<td>0/36</td>
<td>0/48</td>
<td>0/59</td>
<td>0/79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$k=2$</th>
<th>$n=50$</th>
<th>$n=100$</th>
<th>$n=150$</th>
<th>$n=200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>0/50</td>
<td>0/57</td>
<td>0/69</td>
<td>0/8</td>
</tr>
<tr>
<td>1/17</td>
<td>0/49</td>
<td>0/57</td>
<td>0/69</td>
<td>0/8</td>
</tr>
<tr>
<td>1/14</td>
<td>0/44</td>
<td>0/54</td>
<td>0/65</td>
<td>0/8</td>
</tr>
<tr>
<td>1/05</td>
<td>0/36</td>
<td>0/48</td>
<td>0/59</td>
<td>0/79</td>
</tr>
</tbody>
</table>

مراجع

