تحليل دينامیکی گیرخیتی یوندیسی سده‌های بینی قویسی

جواد مرادی، محمدتقی احمدی و شهرام وهدانی

چکیده: در این مطالعه با آزادی بر ادوات فنی سده‌های بینی قویسی و سازه‌های بینی مشابه، مدل‌های تحلیل رفتار گیرخیتی یوندیسی بررسی شده و با در نظر گرفتن ویژگی‌های خاص سده‌های بینی قویسی، مدل مناسبی برای تحلیل گیرخیتی یوندیسی این سازه‌های ارائه شده است. در این مقاله، تنایی‌پایه‌ای کدگذاری شده توسط مولفین در تحلیل سلسله مخلوط سازه‌ای با رفتار گیرخیتی هندسی ارائه گردیده و پس از ثبت سنجی با نتایج مرجع معترف، تحلیل دینامیکی گیرخیتی هندسی سده بینی قویسی ماتریسی تحت زلزله سنتری با استفاده از نرم‌افزار مدل شده است. نتایج نشان می‌دهد که با استفاده از مدل رفتاری تغییر شکل‌های زیرگ ست و نانت کریستال‌های سازه‌ای طراحی شده می‌باشد. افزایش نشان‌هایی که اکتشافات فشاری می‌باشد، این تغییرات برای تنش‌های کششی اوج افزایشی در حدود 6 درصد و برای تنش‌های فشاری اوج کاهش در حدود 9 درصد را نشان می‌دهد. نظر می‌رسد بر اساس نتایج تأثیرات رفتار گیرخیتی هندسی در پایش دینامیکی سده‌های بینی قویسی ضروری می‌باشد.

وژده‌های کلیدی: سده بینی قویسی، رفتار گیرخیتی یوندیسی، یوندی‌پایه‌ای بزرگ، مدل سنتر و نانت

کریستال

1. مقدمه

سده‌های بینی قویسی از جمله سازه‌های مستقر که با توجه به اهمیت و فناوری آن استفاده شده‌اند. از طرفی، این سازه‌ها در دهه‌های اخیر رشد چشمگیری داشته است. با این وجود به علت ایجاد اختلافات و پیچیدگی در ساختارهای سوزنی و ساختارهای پایه شده، مدل‌سازی رفتار گیرخیتی زیرگ و اثرات مادی این سازه‌ها از این دسته موارد به شمار می‌روید.

این مقاله در تاریخ 2/3/2015 دریافت و تاریخ 2/26/2016 به توصیف نهایی رسیده است. جواد مرادی، دکتر حسین ایرانی، فارغ التحصیل دانشکده فنی و انجمن ایرانی، دانشگاه تربیت مدرس.

mahmadi@modares.ac.ir

دکتر مهدی هاشمی، استاد دانشکده فنی و مهندسی، دانشگاه تربیت مدرس.
dokhtar@modares.ac.ir

دکتر مهدی هاشمی، استاد دانشکده فنی و مهندسی، دانشگاه تربیت مدرس.
dokhtar@modares.ac.ir

شواهدانی (عت آی ایرانی)

shahvahdani@ut.ac.ir
در این تحقیق گرش زبان کودک فرض شده و از توصیف الگوریتمی به همکارش استفاده شده است. با توجه به اینکه رفتار غیرخطی‌های زبان‌های سده‌های سوده‌سازی شده در زبان‌های سده‌های اسلامی مشابه در زبان‌های سده‌های اسلامی می‌باشد، در این تحقیق اینکه آزمایشات بی‌بسیاری از شدید بوده است. نتایج این تحقیق نشان‌دهنده اهمیت رفتار غیرخطی‌های سده‌های اسلامی است.

2. تأثیر مطالعات

مطالعات غیرخطی صورت گرفته در زمینه سده‌های سوده‌سازی شده، نشان می‌دهد که رفتار غیرخطی‌های پذیرفته و در زبان‌های سده‌های اسلامی می‌باشد. در این مطالعات، تحقیقاتی به عنوان نمونه می‌توان به مطالعات

در زمینه رفتار غیرخطی – زبان مدرن تابع‌سازی الگوریتمی در ارتباط با مدل‌های سده‌های زبان‌های سده‌های سوده‌سازی شده، نشان می‌دهد که رفتار غیرخطی‌های پذیرفته و در زبان‌های سده‌های اسلامی می‌باشد. در این مطالعات، تحقیقاتی به عنوان نمونه می‌توان به مطالعات

در زمینه رفتار غیرخطی‌های پذیرفته و در زبان‌های سده‌های اسلامی می‌باشد. در این مطالعات، تحقیقاتی به عنوان نمونه می‌توان به مطالعات

در زمینه رفتار غیرخطی‌های پذیرفته و در زبان‌های سده‌های اسلامی می‌باشد. در این مطالعات، تحقیقاتی به عنوان نمونه می‌توان به Mardoulo, Mohammadreza and Shoram, Hamid

72
دیدگاه لاگرانژی خود به دو زیرمجموعه لاگرانژی نام و لاگرانژی به هنگام شده قبل مسایل می‌ماند. از دیدگاه ریاضی این دیدگاه لاگرانژی به هنگام شده و لاگرانژی تن اصلی معادلات هم می‌باشد و وابسته به یک دیدگاه باشد به دوی به تبدیل می‌شوند (1) اما از طرف فیزیک و جنبش‌گرایانه لاگرانژی به هنگام شده به صورت محاسباتی موثری می‌باشد. این امر به این ترتیب این که در این فیزیک و جنبش‌گرایانه لاگرانژی، معادلات معادلات عمومی عامل اصل تغییر مکانیک مجازی به بافت تغییر شکل یافته سازه دست می‌آید.

\[
\int_{t_1}^{t_2} \delta \gamma \left[H(t) + \sum L_i(t) \right] dt = 0
\]

در این رابطه \(H \) تونس کوشی، \(L \) تونس کرنش، \(T \) تاکسیر توان و معادلات تغییر مکانیک مجازی \(V \) مجموم در زمان \(+\Delta \) و \(-\Delta \) بدر نیروهای خارجی شامل نیروهای سطحی و حجمی \(+\Delta R \) می‌باشد.

دشواری اساسی در گابرود و حل رابطه (1) در مرجع بودن بافت در استخراج معادلات حاجی باستی کرنشی و تشکیل‌های رایج کرد که مزدوج کاری با توانایی پیکر بوده و شرط هدهفمندی را دارا به‌شمار که از اطلاعات حاجی باستی کرنشی و تست مناسب در تحلیل تغییر شکل‌های از راه‌داری شده‌اند.

با توجه به مدل تغییرات اندازه نعلق و ملاحظه معاون‌های ضروری کرنش، این تحقیق برای مدل حاجی باستی زنجیره‌ای برای معیار کرنش از کرنش‌های گرین-لاگرانژ و برای معیار نش از معیار نش دوم پیوست.figure

در (Co-rotational Description) مسایل که اعضاپذیری برخی نمونه‌ها و جزئی از تکنیک ما که در مقاله اولیه به علت نابودی شکل نمونه‌بندی از طرف دیگر در می‌آمد در تیپ مورد از این فیزیک و جنبش‌گرایانه جزئی گردد، به صورت دری در برخی موارد مجز در این فیزیک و جنبش‌گرایانه در نمایندگان مردم مقدار معیار به معیار شرایط مرزی در نقطه‌ای از شبکه نمونه همستیم که ماده وجود دارد.

در توصیف اولیه لاگرانژی دلخواه درد حفره‌ای روی مزش شبکه اولیه در جهان تغییر شکل بر روی باره‌ای مانند در مقابله گرندی می‌باشد و در مورد حکایت که این کاندیداکت اعضاپذیری ناشنده می‌باشد. در واقع این روش مزایای هر دو روش گنگه شده قابل ملاحظه شده است.

در توصیف هدفگیر Ragnaric متوسط به بافت افتخاری هم‌خویه با دیگر مدل‌ها به علت صورت گرفتن اولیه به علت مونت گرندی، به دست می‌آید. در حالی که باافتخاری به علت جهت‌گیری از دیدگاه لاگرانژی نام و لاگرانژی به هنگام شده است. با انتخاب توصیف لاگرانژی معادلات عمومی عامل اصل تغییر شکل

\[
\int_{t_1}^{t_2} \delta \gamma \left[H(t) + \sum L_i(t) \right] dt = 0
\]

با تعیین که این کاندیداکت اعضاپذیری ناشنده می‌باشد.

\[
\int_{t_1}^{t_2} \delta \gamma \left[H(t) + \sum L_i(t) \right] dt = 0
\]

با توجه به مدل تغییرات اندازه نعلق و ملاحظه معاون‌های ضروری کرنش، این تحقیق برای مدل حاجی باستی زنجیره‌ای برای معیار کرنش از کرنش‌های گرین-لاگرانژ و برای معیار نش از معیار نش دوم پیوست.figure

جدول 1. عناصر کرنش مورد استفاده در تحلیل‌های تغییر شکل‌ها، تغییر مکان‌های بزرگ

<table>
<thead>
<tr>
<th>عناصر کرنش</th>
<th>میزان استفاده</th>
<th>انتخاب نشی</th>
<th>دیدگاه مورد استفاده</th>
<th>بافت تغییر شکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>برای مثال 1</td>
<td>UL, TL</td>
<td>گیرین-لاگرانژ</td>
<td>انتخاب نشی</td>
<td>گیرین-لاگرانژ</td>
</tr>
<tr>
<td>برای مثال 2</td>
<td>UL, TL</td>
<td>انتخاب نشی</td>
<td>گیرین-لاگرانژ</td>
<td>گیرین-لاگرانژ</td>
</tr>
<tr>
<td>برای مثال 3</td>
<td>UL, TL</td>
<td>هنگی</td>
<td>گیرین-لاگرانژ</td>
<td>گیرین-لاگرانژ</td>
</tr>
</tbody>
</table>

گیرین-لاگرانژ

* UL: برای مثال 1
* TL: برای مثال 2
جدول ۲ میزان‌های تش مورد استفاده در تحلیل‌های تغییر شکل‌ها و تغییر مکان‌های بزرگ

<table>
<thead>
<tr>
<th>پیش‌فرض</th>
<th>دیدگاه مورد</th>
<th>شرط</th>
<th>قانون</th>
<th>سطح ۲</th>
<th>تقارن</th>
<th>تغییر مشاهده</th>
</tr>
</thead>
</table>
| آنتاسی | UL | خور | قانون | UL, TL | در | دیگر

ب: توصیف مصالح

رتبه مشخصه مورد استفاده در تغییر شکل‌های بزرگ را به دو دسته می‌تیند: میان‌بردار و سطح برش. در میان‌بردار، سطح برش از نظر اثر قدرت‌های فلزی و همبستگی این دو روی، مدل‌های تغییر شکل‌های بزرگ دارای نظریهایی برای این سطح برش است که دارای نظریهای تغییر شکل‌های بزرگ در مقایسه کیفیت کاربردی هستند که کوشش‌های استاتیکی که دارای نظریهای بزرگ در مقایسه مدل‌های تغییر شکل‌های بزرگ دارای سطح برشی هستند. این دسته از کاهش دارای زیر جمع‌آوری که مدل سطح و متغیرات

\[\Delta + R_1 = 0 \]

در این رابطه \(S \) مانند سطح دوم پیو-کیرش-فیلی \(\Delta \) أنهالاد-کرنش متغیران تابع اصلی است که مدل سطح

\[\Delta = CE \]

در این رابطه \(t \) مانند سطح دوم پیو-کیرش-فیلی \(\Delta \) أنهالاد-کرنش گرین لارگری و \(C \) سطح برشی اصلی است که مدل سطح

\[\int_{t_1}^{t_2} \rho \delta

\[R_1 \]

که در این بار \(R_1 \) بردار به‌طور گسترده نمایان می‌گردد. با استفاده از این رابطه، مدل سطح و متغیرات

\[\int_{t_1}^{t_2} \rho \delta

\[v \]

که در این بار \(v \) بردار به‌طور گسترده نمایان می‌گردد. با استفاده از این رابطه، مدل سطح و متغیرات

\[\int_{t_1}^{t_2} \rho \delta

\[v \]

که در این بار \(v \) بردار به‌طور گسترده نمایان می‌گردد. با استفاده از این رابطه، مدل سطح و متغیرات

\[\int_{t_1}^{t_2} \rho \delta

\[v \]

که در این بار \(v \) بردار به‌طور گسترده نمایان می‌گردد. با استفاده از این رابطه، مدل سطح و متغیرات

\[\int_{t_1}^{t_2} \rho \delta

\[v \]

که در این بار \(v \) بردار به‌طور گسترده نمایان می‌گردد. با استفاده از این رابطه، مدل سطح و متغیرات

\[\int_{t_1}^{t_2} \rho \delta

\[v \]

که در این بار \(v \) بردار به‌طور گسترده نمایان می‌گردد. با استفاده از این رابطه، مدل سطح و متغیرات
تحلیل دینامیکی غیرخطی هندسی سده‌های بنبی قوزی

بعدی حسات سازی مناسب معاونان، گستره‌ای سازی مان حذف آن و در نهایت اندازه‌گیری برای حل نمود معادلات حامله خواهد بود. فرم خطی معاونه فوق برای مدل دینامیکی با

gُروپِنِتیم ضمیمی در حال‌هایی لگرانژی، کامل و لگرانژی به هنگام

شده به صورت زیر خواهد بود:

\[
M' + \Delta M, U, t + \Delta \frac{t}{U, t} + (F + K \mathcal{M} + K_\text{Geo}) U, t + \Delta \frac{t}{R, t} = 0
\]

\[
M' + \Delta M, U, t + \Delta \frac{t}{U, t} + (F + K \mathcal{M} + K_\text{Geo}) U, t + \Delta \frac{t}{R, t} = 0
\]

در روابط فوق، قبلاً معرفی شده‌است که C, M, L, K, K_\text{Geo} هندسی ماتریسی ماتریس جرم و ماتریس میزان

\[
\text{میانداشتنی (22) رابداری}
\]

بررسی و شبیه‌سازی گره‌های میانداشت علت فیزیکی که این نوع توشیپ وین دیگر دیگر به صورت

۴- کاربرد عداد

در این بخش، توانایی‌هایی که از جمله مدل‌سازی رفتار غیر خطی هندسی سازه یا بیشتر آنها می‌شود در تحلیل‌های از نرم افزار GMap

\[
\text{که موافق اولینی گذاره عکس استفاده همراه است این نرم افزار}
\]

\[
\text{فیلم و ناسازی که تنها مجموعه سالتوین‌های ورودی است. این}
\]

\[
\text{دو درصد ابعاد قرار}
\]

\[
\text{غوته و نامی (درک) گروپُنِتیم مورد نیاز به مصور برخوردی}
\]

\[
\text{جدید به اضافه شده.}
\]

برنامه حالته یکی از مدل‌های محدود سه بعدی بوده که در

\[
\text{المان‌های محدود سه بعدی}
\]

\[
\text{یک محرکه به تغییر گروپنیتایی برگر می‌باشد. درای}
\]

\[
\text{المان‌های زرشی (درک) مدل‌سازی در نتیجه‌اندازه‌ای بای}
\]

\[
\text{اکتشاف شکست کشی و بررسی آنها می‌باشد. کروپنیی}
\]

\[
\text{انگلیسی زبان دریک را به آن کار رفتار بیشتری}
\]

\[
\text{مدل‌های پلاستیستیشه کره‌های کررکور لور و وارنکه}
\]

\[
\text{یارا لوری و وارنکه می‌باشد.}
\]

امکان انتخاب انگلیسی‌زبانی عددی (۲۲) و ۱۴ نقطه‌ای به دلیل

\[
\text{در طرح میانداشتی}
\]

\[
\text{اصحاب روش حرفه‌ای از این امکان‌پذیر است و مدل مینیم‌ژیستی}
\]

\[
\text{است و مدل‌سازی انگلیسی زبان این دینامیکی کامل با احتمال سیال تراکم}
\]
نمودار 5. توزیع تنش‌ها در راستای ضخامت و طول برش برای یک پارامتر P=10

نمودار 6. توزیع کرنش‌ها در راستای ضخامت و طول برش برای یک پارامتر P=10

نمودار 7. خیز نسبی اندازه‌گیری شده در برای مدل‌های بارهای وارد در ANSYS

- تحلیل استاتیکی تغییر مكانیکی یک قوس سطحی این سازه یک قوس سطحی است که تحت پرداخت توسط سازه قرار گرفته است. هندسه و مشخصات این سازه در شکل 8. ارائه شده است. برای مدل‌سازی از 20 الگه استفاده شده است. نتایج 9 تایی جزئی با نتایج آرائه شده در مرجع [31] مقایسه شده است. در این شکل خیز مرکز قوس در برای بارهای وارد به تصویر کشیده شده است. همانطور که دیده می‌شود، نتایج در شکل دارند. در این مرجع از 4 الگه به برای مدل‌سازی داده‌ی از سازه استفاده شده است.

نمودار 8. رفتار کامل بار - خیز تبر

شکل 1. مشخصات و شکل امکان محدود تیر گیر

شکل 2. مقایسه نتایج حاصل با نتایج مرجع [31]
5. خلاصة ونتيجة

در این مقاله بررسی الگوی تغییر فشار رفتار غیرخطی هندسی تنظیم شده و با استفاده از نرم‌افزار ANSYS مدلسازی رفتار غیرخطی و تنش‌های اولریکه فشاری آن تحلیل شده است. نتایج نشان می‌دهد که رفتار غیرخطی هندسی هنگامی که در مورد فشاری آرجوند داشته باشد، کاهش نتایج بیشتری نسبت به رفتار خطی دارد. با افزایش فشار، تغییرات ناشی از این افزایش به‌طور چشم‌گیری در حالت تنش‌های کاهش‌نشین و کاهش تنش‌های فشاری حاد و رفتار غیرخطی مدلسازی شده است. در این حالت، تغییرات در حالت تنش‌های کاهش‌نشین و کاهش تنش‌های فشاری جهت بررسی تغییرات به‌طور مستقل انجام شده است. برای ترکیب این دو حالت، مدل ANSYS به‌کار گرفته شده است. نتایج نشان می‌دهد که رفتار غیرخطی در حالت تنش‌های کاهش‌نشین و کاهش تنش‌های فشاری به طور مشابه به رفتار خطی است. اما در حالت تنش‌های کاهش‌نشین و در حالت تنش‌های فشاری، تغییرات بیشتری در حالت تنش‌های کاهش‌نشین و کاهش تنش‌های فشاری مشاهده می‌شود.

(شکل 15) تغییرات تکانه در حالت تنش‌های کاهش‌نشین و در حالت تنش‌های فشاری.

6. تجربه و نتیجه نهایی

در این مطالعه، بررسی الگوی تغییر فشار رفتار غیرخطی هندسی تنظیم شده و با استفاده از نرم‌افزار ANSYS مدلسازی رفتار غیرخطی و تنش‌های اولریکه فشاری آن تحلیل شده است. نتایج نشان می‌دهد که رفتار غیرخطی هندسی هنگامی که در مورد فشاری آرجوند داشته باشد، کاهش نتایج بیشتری نسبت به رفتار خطی دارد. با افزایش فشار، تغییرات ناشی از این افزایش به‌طور چشم‌گیری در حالت تنش‌های کاهش‌نشین و کاهش تنش‌های فشاری حاد و رفتار غیرخطی مدلسازی شده است. در این حالت، تغییرات در حالت تنش‌های کاهش‌نشین و کاهش تنش‌های فشاری جهت بررسی تغییرات به‌طور مستقل انجام شده است. برای ترکیب این دو حالت، مدل ANSYS به‌کار گرفته شده است. نتایج نشان می‌دهد که رفتار غیرخطی در حالت تنش‌های کاهش‌نشین و کاهش تنش‌های فشاری به طور مشابه به رفتار خطی است. اما در حالت تنش‌های کاهش‌نشین و در حالت تنش‌های فشاری، تغییرات بیشتری در حالت تنش‌های کاهش‌نشین و کاهش تنش‌های فشاری مشاهده می‌شود.

(شکل 15) تغییرات تکانه در حالت تنش‌های کاهش‌نشین و در حالت تنش‌های فشاری.

