کنترل ارتعاشات لرزه‌ای قاب‌های فولادی متعارف به کمک میکروگر جرمی

سید مهدی زهرانی و سید فرید هاشمی

چکیده: در دو دهه آخر میکروگر جرمی متوانست به عنوان یکی از روش‌های کنترل غیر فعال بر روی ساخته‌های بلند در برای زلزله بکار رفته است. در این مقاله اثر سیستم میکروگر جرمی بر روی رفتار لرزه‌سازی‌های بکار گرفته بر روی ساخته‌های میکروگر عددی مثال‌ها در ادامه ناشنده میکروگر در ارتعاشات سیال سازه، قبلاً بر رفتار سازید. این مقاله یکی از ابزارهای قابل استفاده برای تغییر کلاس سازید. همچنین نسبت جابجایی حداکثر سیستم با میکروگر به سیستمی به حالت بدون میکروگر تا حد زیادی به شکل رکورد زلزله ورودی

واژه‌های کلیدی: میکروگر، سیستم، فولاد سیالی، خمش، کنترل غیر فعال، ارتعاشات از لرزه‌ای

1. مقدمه

با توجه به پیشرفت‌های اخیر در زمینه کنترل سازید در برای زلزله و باید، نیاز به سیستم‌های کنترل غیرفعال و پایدار نقاط مخفی و ضعف این سیستم‌ها از جمله سیستم میکروگر متوانی در کشورهای زلزله‌زا جهت پیشرفت و بهبود مقاله آاست. در سیستم میکروگر جرمی متوانی به سیستم کنترل غیرفعال سازید به روشهای کنترلی که کارشنهای نیاز به استحکام ازون از اعمال اپراتور سازید در برای برتری جهیزی اعمال شده می‌باشد. این نیاز اتصالات حیرت جرمی سنجین بر روی اعمال برای سازید انجام که در مقاله Frahm و Den Hartog اشاره کرده‌اند که ابتدا به سیراکو مکانهای مکانیکی که فقط یک فنکس موثر بر فناوری ساخته‌ای اساسی ماختیاب دارای نیروی و دارای نتيجة است. سازید به این مثال از اعمال برای محیطی و مناسب هستند. این نیاز دارای مسئله می‌باشد. مواد زیادی مطالعه و بررسی و نظر میکروگر متوانی بر نحوه عملکرد آن بر روی ساخته‌های به منظور کنترل ارتعاشات ناشی از برخی جابجایی در سی سال این جامعات شده که برای از آنها در این مقاله مورد تحقیق و حلکرد چیدمان در حوالی انجام می‌باشد.

در ایران به خوبی شناخته‌شده و پنج سال اخیر مورد توجه قرار گرفته کاربرد میکروگر Ghannadian-Asl و Zahraei است. در این مقاله میکروگر جرمی

Downloaded from ijpm.ust.ac.ir at 501 IRST on Friday November 20th 2020 0:21 PM
سید مهدی زهراei و سید فرید حاشیه

2-1 سیستم‌های نامیبر
برای محاسبه میزان کارآیی و باره میکروگرم جرمی در Den Hartog چنین سیستم‌های نامیبر تحت تخلیص سینوگی و
بای کار است (f(t)=P_{sp}(t)) است که

\[
R = \frac{y_{\max}}{y} = \frac{(1 - \beta)^2 + (\frac{\alpha}{2})^2}{[(1 - \beta)^2 - \alpha^2 - (\alpha^2 + 1)\beta]} \frac{m}{M} \mu = m/M \mu = m/M \mu
\]

که شرح پارامترهای بکار رفته به انواع است که

\[
\beta = \frac{c}{c_0}, \quad \alpha = \frac{c}{c_0}, \quad \mu = \frac{c}{c_0}
\]

ویا دیگر می‌باشد.

\[\alpha \in (0, \infty) \quad \beta \in (0, 1) \quad \mu \in (0, 1)
\]

2-2 بررسی توری حکم
بعنوان اصل پیده‌نشده شده برای میکروگرم جرمی این وسیله مشکلی از جرمی است که به یک سازه مناسب است و این جرم در همان فرکانس سازه و یا یک تاباک فاز انتشار می‌کند. جرم مطلوب از طریق یک فنر به سازه متصل می‌شود که از طریق حركت نسبی بین جرم و سازه تقویم پیوندی وارد به سیستم می‌شود (شکل 1).

1- معادلات حکم برای سیستم کلی به انواع است:

\[
M \ddot{y}(t) + C_{\gamma}(t) + K_{\gamma}(t) = c(t) + k(t) + f(t)
\]

\[
m \ddot{\xi}(t) + c(t) + k(t) - m \ddot{y}(t) = g(t)
\]

\[m \ddot{\xi}(t) + c(t) + k(t) - m \ddot{y}(t) = m \ddot{\eta}(t)
\]

\[m \ddot{\eta}(t) - m \ddot{\xi}(t) = m \ddot{\eta}(t)
\]

نتیجه:

\[m \ddot{\xi}(t) + c(t) + k(t) - m \ddot{y}(t) = m \ddot{\eta}(t)
\]

شکل 1 سیستم توری حکم و سیستم میکروگرم جرمی

\[\text{شکل 1 سیستم توری حکم و سیستم میکروگرم جرمی}
\]

\[\text{شکل 1 سیستم توری حکم و سیستم میکروگرم جرمی}
\]
کنترل ارتباطات لرزه‌ای قایل‌ها فولادی متعارف به کمک میکروگرای جرمی

در سال 1946، برک (Brock) رابطه Q و P را در دو فصل مرجون می‌داند. در این فصل، برای میکروگرای جرمی، تکنیک زیر را برای محاسبه مقدار پهنی به این صورت ارائه داده است:

\[
\xi_{opt} = \frac{3\mu}{\sqrt{8(1+\mu)}}
\]

شکل 2. ضریب بزرگنمایی تصویر تابعی از [β]

از مقدارهای می‌تواند فهمید که افزایش در جرم میکروگرای همین‌طور ضریب بزرگنمایی حداکثر برای میکروگرای جرمی به طراحی حال بهینه را کاهش می‌دهد. مقداری این ضرایب بزرگنمایی حداکثر و بارمانه‌ای میکروگرای بر حسب تحریکات در حالات مختلف و همچنین مقدار پایین بر حسب نیاز در جدول 1 اندیشده است.

جدول 1. بارمانه‌ای میکروگرای بهینه متعلق به سیستم‌های

درجه آزادی

<table>
<thead>
<tr>
<th>[μ]</th>
<th>0</th>
<th>0.1</th>
<th>0.3</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>0</td>
<td>0.07</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>R</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>α</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>ζ</td>
<td>0</td>
<td>0.07</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

در اینجا، می‌توان بر اساس این تعریف شده است که با تغییر در طبقات صحنه‌ای، عنصری انجام‌پذیر است که به هنگامه متعادل می‌تواند جابجایی طبقه باعث در ساختار میکروگرای بزرگنمایی شود. در اینجا، عنصری انجام‌پذیر است که به هنگامه متعادل می‌تواند جابجایی طبقه باعث در ساختار میکروگرای بزرگنمایی شود.
میکروآرم‌خاکی یا کاهش پاسخ مود اول سازه‌های جدید درجه‌ی آزادی ناحیهٔ کردن و مشکلی در طراحی میکروآرم‌خاکی که میکروآرم‌خاکی مشخص و قابل محاسبه‌ای تا نداند این نکن.

3. بررسی ملاحظات اجباری

در انتخاب سیستم میکروآرم‌خاکی مهم‌ترین سایر وجود دارد [4] از قبیل: کارایی، ایمنی و ضرایب بودن، هزینه انتقالی سیستم، هزینه‌ها و کارکرد کاهش و اشتباه سیستم برای خود سیستم. در طراحی میکروآرم‌خاکی باید توجه داشته شود که مقدار کاهش لایه‌ی دیمانیک که بطور عمیق می‌تواند بی‌ثباتی باید ایجاد شود. اولین و مهم‌ترین

پایان‌ریزی میکروآرم که به سیستم می‌باشد که در بالای

ساختار قرار داده و معنای بینش از 1 تا 3 درصد جریان مودی در

نقطه‌ی میکروآرم گردید. باعث شویی آن را حدود 300 تا 450 تر برای جرم

میکروآرم معلوم از فولاد به راحتی می‌تواند گردید. سیستم میکروآرم‌خاکی برای فضاپیمان خالی کارگردان، سیستم میکروآرم‌خاکی به لیسته‌ی نام‌های

که مناسب و به جرم اجرایی بلوان حرکت کنن. به عنوان یک

نمونه استفاده شده از یک میکروآرم‌خاکی جرمی در دنیا می‌توان به

نیوبورکس اشاره کرد که Citicorp میکروآرم‌خاکی استفاده شده بود در برن ارتباط با 728 متر داشته، و از میکروآرم‌سکوی نوع‌های جدید و

حریق (تکریک سیستم غیر فعال و قفل) برای کنترل جهان‌ریزی در طبقه

47 سیستم بنا شده است.

میکروآرم‌خاکی بنی‌میلی‌سیستم چه 330 نی این که بر روی دو

تحال میدویست تونی‌ماکتاینی با اصطلاح‌بگیرنی که قرار داده شده و به

این عکس واحد شان، داده به ارتباط‌ها سازه‌های تا حکایت شویی 1

می‌گذارد و می‌تواند مکان جرای میکروآرم یا

جرمی می‌باشد: سیستم میکروآرم‌خاکی بوده. به شکلی که در

برنامه‌ی ماکتاینی (Non-Linear Link)

روی یکی گردید و در بین حد اصلی جرم

میکروآرم‌خاکی و محل اصلی میکروآرم‌خاکی به سازه قرار داده‌است

که به‌یک دارایی ساختی برای بررسی مورد نیاز در میکروآرم

3. بررسی رفتار سیستم‌های مختلف سازه‌ای

نرم‌افزار مورد استفاده در این مقاله، SAP2000 [10] می‌باشد. در

مدل‌سازی کامپیوتری سیستم میکروآرم‌خاکی از عرض اتصال غیر خطی

(Non-Linear Link) با خصائص Damper Nalink به دست آمده و در

میکروآرم‌خاکی به سازه قرار داده‌است که به‌یک دارایی ساختی برای بررسی مورد نیاز در میکروآرم‌خاکی
کنترل ارتعاشات لرزه‌های قابلیتی فولادی معرفی بر کمک میکروگرم‌های

شکل‌های 4 تا 7 مربوط به جراحی‌ها و شناسایی‌های از بام تحت
زلزله‌های سنگین و مناسب در زمینه سردره در آزادی می‌باشد. پوشش
دیده می‌شود که میکروگرم‌های منتقل روزه سازه های کودک
آزادی (و سازه هایه یک مورد گالب دارند) بی‌شایع این کانونه و
ارتعاشات ناشی از زلزله را کاهش داده است. لذا می‌توان انتظار داشت
در زسازه‌های معادل مربوط به بی‌شایع کمک از زلزله ناشی از زلزله یا
باید قابل قبول و کمال ملیس است.

مقدار نمودار جابجایی بام تحت زلزله سنگین

شکل 4 نمودار جابجایی بام تحت زلزله سنگین

شکل 5 نمودار جابجایی بام تحت زلزله منظم

شکل 6 نمودار شتاب بام تحت زلزله منظم

شکل 7 نمودار شتاب بام تحت زلزله منظم

بعد از انجام آنالیز مدل سازه (هم سه‌بعده) شده است که این مقادیر با در نظر گرفتن
بارمده 500 کیلوگرم بر مترا و بار زده 200 کیلوگرم بر مترا
مربع (می‌یابند) مقادیر پروری زمین‌زمین از امتداد X
8.54 تن این
بدست آمد. هم‌چنین سازه در دولاب باید توانایی
بررسی شده است. مقادیر
(نسبت جرم میکروگرم به جرم کل سازه نتائ
5٪ فرض شده و از آن با توجه به گالب بودن مدل اولیه، افزایش می‌توان
به میکروگرم به یک سه‌ بعدی است.

برای برای 5٪ باشند. لذا
در نتیجه جرم میکروگرم
برابر 79900 کیلوگرم در واحد
برابر 0.58 از رابطه 8
برابر 9820/1 و از رابطه 8

شکل 8 پلان ساختمان مورد بررسی

شکل 9 مقطع ساختمان مورد بررسی

شکل 10 اسکلت فولادی 10 طبقه با اتصالات خمشی

بعنوان حالت اول سیستم سازه فولادی با اتصالات خمشی و کف‌های
دیافراگم سیمب سه گرفته می‌شود. پلان و مقطع ساختمان در
شکل‌های 8 و 9 شان داده شده است. نکته قابل توجه در کارگاهی
میکروگرم‌های اینست که چون جرم نوسان کندنه در اکثر سازه به
سیستم نیروی عملی می‌گذرد. لذا باید مسرح حرکت میکروگر و نقطه
عملی نوری میکروگر حلی و حوش مرکز سختی بوده تا در سازه ایجاد
پیچش نکند. لذا برای قرار دادن میکروگر در امتداد محور X
باید است
میکروگر در نقطه A قرار داده شود تا مسرح حرکت در امتداد

31 17 25 30

مورد بررسی
برابر $133.7/01$ می‌شود. جانشین محاسبات در راستای π جای دیگر مقدار میزان میکروگزه 19900 کیلوگرم بر جدایی ناپی و سایر میکروگزه 22000 کیلوگرم بر تانیه می‌باشد. این داده سیستم سازه و $F(t)=10000$ می‌باشد که مشابه با مقدار $\sin t$ نمودار جابجایی نقطه‌ای از یک در سازه در شکل 10 برای درجات بهینه است. نرود میکروگزه روابط به پسان میکروگزه می‌باشد. در ایحاتل نسبت مقدار اوج جابجایی بعد از اضافه کردن میکروگزه به اوج جابجایی بدون داشتن میکروگزه 45% می‌باشد.

![شکل 12: جابجایی نقطه‌ای از یک در سازه نامیا تحت زلزله منجر گردیده‌است](image.png)

![شکل 13: برش پایه در سازه نامیا تحت زلزله منجر گردیده‌است](image.png)

![شکل 14: برش پایه در سازه نامیا تحت زلزله منجر گردیده‌است](image.png)

همانطور که دیده می‌شود استفاده از میکروگزه در کاهش مقدار برش پایه نیز موجب کاهش شده است. استفاده از میکروگزه در کاهش برش پایه نیز بهبود می‌یابد. همانطور که در شکل 12 و 13 مشاهده می‌شود مقدار حاکم میکروگزه در استفاده از میکروگزه $2/3$ و $1/3$ ترکیب تحت زلزله سنترور با فاقدار $33/3$ و $44/3$ تحت زلزله منجر- آب بر بانزه $1/3$.

![شکل 11: جابجایی نقطه‌ای از یک در سازه نامیا تحت زلزله سنترور منجر گردیده‌است](image.png)
کنترل ارتعاشات درجه‌بندی فولادی متعارف به کمک میزادرک جریمه

شکل ۱۵. مقدار نیروی فنر در سازه نامیا تحت زلزله

شکل ۱۶. مقدار نیروی فنر در سازه نامیا تحت زلزله

جدول ۲. پارامترهای میزادرک بهینه

μ	α_μ	K_TMD (kg/s^2)	C_TMD (kg/s)	M_TMD (kg)	T_{بهینه} (sec)	نسبت میکس
۱/۵	۹/۱۴	۸۹۱۴	۸۵۲۱	۳۱۹۴	۲/۰۲	۵۴۰
۱/۳	۱/۱۴	۲۱۱۳	۲۱۷۵	۲۱۵۶	۲/۰۱	۵۴۰

حال جانبه جوی سازه درایه میزادرک ۵/۵ بوده و بهبود سازه ۷۵/۵ تایی باشد. از جدول ۲ پارامترهای میزادرک بهینه برای μ = ۱/۵ = ۱/۵ و μ = ۱/۳ = ۱/۵ که با درون‌تایی بین مقدار مربوط به μ = ۲/۰۲ = ۵۴۰ به‌دست می‌آید به این قرار است:

شکل‌های ۱۷ و ۱۸ بانکار جابجایی مطلق نقطه ای از بام در سازه میزادرک دو زلزله مزکور می‌باشد. با مقایسه شکل‌های ۱۷ و ۱۸ و ۱۷ و ۱۸ دیده می‌شود که اثر وجود میزادرک در سازه نامیا محسوب می‌باشد. علت این امر این است که هماهنگی در نمودارهای مربوط به شکل‌های ۱۷ و ۱۸ در سازه نامیا بدیل نیود.
جایگاهی مطلق نقطه‌ای از بام در حالات بدون استفاده از میوگر و با استفاده از میوگر تحت دو زنله مورد بحث می‌باشد. برپایه سازه بدون اتصال میوگر 155 تایی می‌باشد.

جدول 5. پارامترهای میوگر بهره‌مند

<table>
<thead>
<tr>
<th>(%/%)</th>
<th>μ</th>
<th>α_σ</th>
<th>K_TMD (kg/s²)</th>
<th>C_TMD (kg/s)</th>
<th>M_TMD (kg)</th>
<th>T_M (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/50</td>
<td>0.042</td>
<td>0.047</td>
<td>0.5926</td>
<td>0.46</td>
<td>0.349</td>
<td>0.522</td>
</tr>
<tr>
<td>70/30</td>
<td>0.025</td>
<td>0.05</td>
<td>0.50</td>
<td>0.44</td>
<td>0.34</td>
<td>0.48</td>
</tr>
<tr>
<td>90/10</td>
<td>0.015</td>
<td>0.055</td>
<td>0.45</td>
<td>0.42</td>
<td>0.33</td>
<td>0.45</td>
</tr>
</tbody>
</table>

نمایشگر که دیده می‌شود حالتی که سازه صلب شده است (یعنی استفاده از دو پایین)، تاثیر میوگر بروی سازه کمتر شده است. بنابراین هنگامی که تحقیج گرفت که هر چه سازه ترمیم باشد اثر میوگر جرمی بروی آن ملوست و بیشتر می‌باشد.

برای بروی‌اش اثر تعداد طبقات بر روی رفتار سازه

5 طبقه و یک‌پر بروی ساخته‌ای 20 طبقه بروی‌رسی می‌گردد.

جدول 4. پارامترهای میوگر بهره‌مند

<table>
<thead>
<tr>
<th>(%/%)</th>
<th>μ</th>
<th>α_σ</th>
<th>K_TMD (kg/s²)</th>
<th>C_TMD (kg/s)</th>
<th>M_TMD (kg)</th>
<th>T_M (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/50</td>
<td>0.042</td>
<td>0.047</td>
<td>0.5926</td>
<td>0.46</td>
<td>0.349</td>
<td>0.522</td>
</tr>
<tr>
<td>70/30</td>
<td>0.025</td>
<td>0.05</td>
<td>0.50</td>
<td>0.44</td>
<td>0.34</td>
<td>0.48</td>
</tr>
<tr>
<td>90/10</td>
<td>0.015</td>
<td>0.055</td>
<td>0.45</td>
<td>0.42</td>
<td>0.33</td>
<td>0.45</td>
</tr>
</tbody>
</table>

نمایشگر که دیده می‌شود حالتی که سازه صلب شده است (یعنی استفاده از دو پایین)، تاثیر میوگر بروی سازه کمتر شده است. بنابراین هنگامی که تحقیج گرفت که هر چه سازه ترمیم باشد اثر میوگر جرمی بروی آن ملوست و بیشتر می‌باشد.

برای بروی‌اش اثر تعداد طبقات بر روی رفتار سازه

5 طبقه و یک‌پر بروی ساخته‌ای 20 طبقه بروی‌رسی می‌گردد.

۲-۴. حالت دوم: در این حالت پایین‌ها در وضعیت نشان داده شده و در طرفین ساخته‌ای (در شکل ۲۳) استفاده شده‌اند که سختی پیچشی و جابجای سازه نسبت به حالت قبل بسیار بیشتر شده و اصطلاحاً سازه صلب‌تر شده است. شکل‌های ۲۳ و ۲۴ مربوط به

شکل ۲۳. جایگاهی نقطه‌ای از بام در حالت دوم تحت زنله

شکل ۲۴. جایگاهی نقطه‌ای از بام تحت زنله میانگین

شکل ۲۵. جایگاهی نقطه‌ای از بام تحت زنله میانگین

شکل ۲۶. جایگاهی نقطه‌ای از بام تحت زنله میانگین
شکل ۲۲: جاهاگی نقطه‌ای از بام در حال زواله‌پردازی

جدول ۷: پارامترهای میتراک گریمی

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>μ</th>
<th>α_{оп}</th>
<th>K_{ь} ; (kg/s²)</th>
<th>C_{ь} ; (kg/s)</th>
<th>M_{ь} ; (kg)</th>
<th>T_{дв} ; (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۲</td>
<td></td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۰/۹۹</td>
<td></td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۰/۹۹</td>
<td></td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۱/۲</td>
<td></td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۰/۹۹</td>
<td></td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۰/۹۹</td>
<td></td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
</tr>
</tbody>
</table>

شکل ۲۳: جاهاگی نقطه‌ای از بام تحت زواله‌پردازی (آبی‌رنگ)

شکل ۲۴: جاهاگی نقطه‌ای از بام تحت زواله‌پردازی (آبی‌رنگ)

شکل ۲۵: جاهاگی نقطه‌ای از بام تحت زواله‌پردازی (آبی‌رنگ)
4-4- بررسی محل قرار گرفتن میکروگریم در ارتفاع
در این قسمت به بررسی اثر محل قرار گرفتن میکروگریم جرمی در فنار
میکروگریم بر روی سازه می‌پردازیم. در سازه ۱۰ طبقه بحث شده
چنانچه میکروگریم در طبقه‌های غیر از این قرار قرار داده می‌شود.
شنمی ساختمان قرار بگیرد جایگاهی تطبیقی از دیافراگم باشد.
ما ساختمان که بیشترین تطبیقی را دارد به نظر شکل ۲۸ و ۲۹ می‌باشد.

شکل ۲۸: جایگاهی تطبیقی از دیافراگم پام هنگامیکه
میکروگریم در طبقه ۶م قرار داشته باشد (تحت زلزله استندور)

شکل ۲۹: جایگاهی تطبیقی از دیافراگم پام هنگامیکه
میکروگریم در طبقه ۵م قرار داشته باشد (تحت زلزله منجان)

همانطور که در قسمت ۴-۳ ذکر شد هنگامیکه میکروگریم در بام
قرار داشت، بینالایی کاهش جایگاهی حداکثر در سازه با میکروگریم با
نسبت جرمی ۳۰/۳ و ۱۰/۵ نسبت به سازه تنها (بدون میکروگریم)
تحت زلزله استندور به ترتیب ۴۱/۳ و ۴۱/۳ و تحت زلزله منجان
به ترتیب ۶۵/۵ و ۷۰/۵ بود. اما هنگامیکه میکروگریم در طبقه ۶م
قرار گرفت نسبت کاهش مذکور برای میکروگریم‌های هنگامیکه تحت
زلزله استندور به ترتیب ۲۵/۱ و ۳۵/۱ و تحت زلزله منجان
به ترتیب ۴۳/۱ و ۴۴/۱ بود.

در این مقاله رفتار میکروگریم جرمی بر روی حالات مختلف سیستم‌های
ساختمانی مورد بررسی قرار گرفت. با توجه به فاصله نوسانی میکروگریم
بر روی سازه نیاز به آزادی حرکت بدون قید و ناشی ریل‌های صکوف
و عاری از اتصالات از جمله نگرانی از سوی سازه در برقرار
نوسانات بار خارجی می‌باشد. اگر این مطالعات فوق داشتن
مسیر به اتصالات بوده و سالم باشد در عمل به نبوده و غیر
مرتبط مقدماتی از راندمان بهداشت آمد با بررسی سیستم میکروگریم
که می‌تواند نشان گویان اثر میکروگریم بر روی
ارتعاشات سازه می‌باشد. نکته مهم در راندمان میکروگریم گالب بودن
که در حال سازه می‌باشد که میکروگریم برای کنترل این مود طراحی و نصب
می‌گردد و بازه میکروگریم صرفه‌ای به تعداد طبقات سازه مربوط نیست.
کنترل ارتعاشات لرزه‌های قابل‌پایه فولادی متعارف به کمک میکروکرم‌گری

مسلماً روابط اخیر خرای سازه‌های یکپارچه آزادی جواب جهت داده و میکروکرم‌های تعریծ شده برای این سازه‌ها عملکردی بهتری دارند. لذا سازه‌های بی‌کنوی آزادی بُنده مربوط به یک دارای جرم متمرکز در ارتفاع بالا می‌باشند و سپس برای مختل‌های متحرک گزینه برای استفاده از میکروکرم‌ها گرم در کاهش ارتعاشات ناشی از زلزله و داد در آنها می‌باشد. از دیگر نتایج به است که راهنمای و تأثیر بیشتر میکروکرم‌های بروی سیستم‌های سازه‌های آشنا می‌باشد. در فرآیند میکروکرم‌های توای به این تکنیک توجه داشته که میکروکرم‌های توان از روش اولین ماکزیمم بار ورودی (با شتاب) عامل شده و توای فرآیندند حداکثری به دست را داراست. لذا نسبت چوگنی حداکثر سیستم با میکروکرم به چوگنی سیستم بدون میکروکرم به شکل زیرکورد (زلزله) و رودی ویاست.

مراجع

