مدلی جدید برای حل مسائل موانعه خط مونتاژ هزینگرا

حسنعلی موسیزادگان و سید حسین الدین ذغردی

چکیده: در این مقاله، یک مدل جدید هزینگرا برای مسائل موانعه خط مونتاژ را ارائه کرده است که شامل هزینه تیار، ارسال و خرید تجهیزات می‌باشد. روشکار این مدل است که هزینه‌های مذکور به‌طور معمول خط مونتاژ افزوده می‌شوند، امکان استفاده از تجهیزات مشترک بین کارهای مونتاژ را می‌کند. تابع هدف محدوده‌هایی از مدل در قابل رواپیمایی بین سه و روابط نیز برای محاسبه جهت پایین و بالای نتایج هدف از شده است. برای حل مشکل مربوط به این مدل از الگوریتم زنگیک Random Task Assignment (RTA) پیشنهادی یک روش معروف وجود یافته است که تابع حاصل از این بررسی می‌زند و بر اساس نسبت الگوریتم زنگیک حذف یافته قابلیت جواب و هم از نظر زمان حل به خوبی شکسته می‌کند.

واژه‌کلیدی: خط مونتاژ، هزینه تیار، ارسال و خرید تجهیزات الگوریتم زنگیک

1. مقدمه

مساحتی موانعه خط مونتاژ شامل مجموعه‌ای از کارهای متفاوت مربوط به مونتاژ محصول است که به ترتیب هر کارها به‌طور جداگانه نشان می‌دهد. یک تجربیه‌ای اخلاقی که مختلف برای مسائل موانعه خط مونتاژ تعریف می‌شود، کاهش زمان‌های حاصل و جایگزینی از شرکت‌های تأسیسی و انتخاب خط مونتاژ یا کارهای زیرساختهای سنگین و عملیاتی همیشه مورد علاقه مدیران بوده است.

در این مقاله یک مدل ترکیبی از هزینه‌های تیار، ارسال و خرید تجهیزات برای مسائل موانعه خط مونتاژ ارائه می‌شود که به ضریب‌های و شرایط مختلف خط مونتاژ منطقه‌ای بهره و بسته به کمک آن هزینه‌های مختلف خط مونتاژ را کاهش داده و بر کارایی آن افزوده. در قسمت‌های بعدی این مقاله ابتدا مورد بر پایه‌های اهمیت‌گذاری صورت گرفته و سپس قطعاتی مربوط به‌طور همزمان اینکه به نظر می‌رسد کاربردی‌تر از سابع مدل‌ها می‌باشد، انتخاب شده و مورد نقد و بررسی قرار می‌گیرد و با اینکه از آنها مدل جدیدی به‌وجود می‌آید که دسترسی این تحقیق است.

با توجه به قابلیت خوب الگوریتم زنگیک برای استفاده در مسائل موانعه خط مونتاژ و با تابع هدف جدید مبارزه، از این الگوریتم برای
شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

2 موروری مدل هزینه‌گر

در مدل‌های اولین مدل هزینه‌گر، مسأله اول باشد. هدف در این مقاله این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

در مدل‌های اولین مدل هزینه‌گر، مسأله اول باشد. هدف در این مقاله این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.

شاید نمونه گفت اولین مدل هزینه‌گر، مسأله‌ای نوای اول باشد. هدف در این مطالعه این است که به‌جز زمان سکل‌داده شده، حداکثر مقدار هزینه‌گر در علاوه بر طبقه بازنشستگی، و مدل‌های دیگر از راکوالی اکثر انسان‌ها در سال‌های اخیر به‌طور عمومی به‌عمر، و این مدل‌ها می‌توانند برای تجزیه‌بندی مسائل مختلف باشد.
کارهای اختصاصی‌ای به آن ایستگاه می‌باشد، در هر چگونه است. زیرا معمولاً به رای آئین‌ها استخراج کارهای مختلف می‌تواند با رای آئین‌ها و در برخی از آنها تأثیر بر ابزار تأثیرگذار نتوانسته باشد و در برخی از آنها دقت کافی ندارد. ممکن است که کارهای اختصاصی ای ایستگاه قرار گیرد و از مورد استفاده باشد.

با اعمال تغییرات فوق در این دو دسته و تغییرات آنها که یکدیگر مدل پیشنهادی در این تحقیق شکل می‌گیرد که در این دو در هر چکا یک که از آنها بدست آمده است.

که روش محاسبه و فرضیات آن به صورت زیر است:

۳-۱ هزینه تجهیزات
در این مسأله فرض می‌شود که تعداد انجام هر یک از کارهای مونتازه تری با تغییرات مورد استفاده با رای آئین‌ها و در برخی از آنها دقت کافی ندارد. ممکن است که کارهای اختصاصی ای ایستگاه قرار گیرد و از مورد استفاده باشد.

۳-۲ هزینه تجهیزات
در این مسأله فرض می‌شود که تعداد انجام هر یک از کارهای مونتازه تری با تغییرات مورد استفاده با رای آئین‌ها و در برخی از آنها دقت کافی ندارد. ممکن است که کارهای اختصاصی ای ایستگاه قرار گیرد و از مورد استفاده باشد.

۴ مدل ریاضی
قبل از ارائه مدل ریاضی پایدارترها و متعارض‌ها که برای پایان محصولات ای و تغییر در قابل روابط ریاضی با دوره، معرفی شوند. پایدارترها و داده‌های اولیه مورد استفاده در مدل بیان‌رای

می‌شوند: n و h تعداد کارهای مونتازه که اندیس کارها با n و h همچنین محدوده‌های عمومی مسأله موانع خط مونتازه از:

$\begin{align*}
 \sum_{i=1}^{n} x_i &= h \\
 \sum_{j=1}^{h} y_j &= i \\
 x_i &\geq 0 \\
 y_j &\geq 0
\end{align*}$
رابطه (1) تابع هدف این مدل را نشان می‌دهد. به‌خیص اول این رابطه مربوط به هزینه تبادل اندازه است. مقدار داخل پارانتز، رابطه هزینه تبادل اندازه‌ای است که زمان سیکل نزدیک به زمان سکل، اگر کار i و j به‌طور زیر تعیین می‌شود:

\[p_{ij} = (1) \]

در غیر اینصورت

\[p_{ij} = (0) \]

رابطه (1) تابع هدف این مدل را نشان می‌دهد. به‌خیص اول این رابطه مربوط به هزینه تبادل اندازه است. مقدار داخل پارانتز، رابطه هزینه تبادل اندازه‌ای است که زمان سیکل نزدیک به زمان سکل، اگر کار i و j به‌طور زیر تعیین می‌شود:

\[p_{ij} = (1) \]

در غیر اینصورت

\[p_{ij} = (0) \]

رابطه (1) تابع هدف این مدل را نشان می‌دهد. به‌خیص اول این رابطه مربوط به هزینه تبادل اندازه است. مقدار داخل پارانتز، رابطه هزینه تبادل اندازه‌ای است که زمان سیکل نزدیک به زمان سکل، اگر کار i و j به‌طور زیر تعیین می‌شود:

\[p_{ij} = (1) \]

در غیر اینصورت

\[p_{ij} = (0) \]

رابطه (1) تابع هدف این مدل را نشان می‌دهد. به‌خیص اول این رابطه مربوط به هزینه تبادل اندازه است. مقدار داخل پارانتز، رابطه هزینه تبادل اندازه‌ای است که زمان سیکل نزدیک به زمان سکل، اگر کار i و j به‌طور زیر تعیین می‌شود:

\[p_{ij} = (1) \]

در غیر اینصورت

\[p_{ij} = (0) \]

رابطه (1) تابع هدف این مدل را نشان می‌دهد. به‌خیص اول این رابطه مربوط به هزینه تبادل اندازه است. مقدار داخل پارانتز، رابطه هزینه تبادل اندازه‌ای است که زمان سیکل نزدیک به زمان سکل، اگر کار i و j به‌طور زیر تعیین می‌شود:

\[p_{ij} = (1) \]

در غیر اینصورت

\[p_{ij} = (0) \]
مثالی از این بود که در آن زمان انجام کلیه کارا برای زمان سیکل
باشد، در این صورت هرکدام از کارهای موثر در این‌ها کارایی
قرار می‌گیرد و هزینه نیروی انسانی و تجهیزات زمان (7)
به دست می‌آید.

5. مثال عددي
جهت آشنابی بیشتری نسبت به محاسبه هزینه‌ها و حذف
جالب (1) که زمان انجام کارا و نیروی انسانی و تجهیزات
مورد استفاده با برای یک مثال دلخواه نشان می‌دهد، در
نظر گرفته و در محاسبه حذف باید و نیازی به روابط
پیش‌نمرای نیست.

جدول 1: زمان و هزینه نیروی انسانی و نوع تجهیزات

<table>
<thead>
<tr>
<th>شماره کار</th>
<th>زمان کار</th>
<th>هزینه نیروی انسانی</th>
<th>نوع تجهیزات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

در صورتی که زمان سیکل برای 10 بوده و دو نوع تجهیزات 1 و 0 برای
انجام کارهای موثر وجود داشته باشد که هزینه خرید آنها به ترتیب
برابر و 100 و 250 بوده و در این صورت با توجه
به این جدول، حذف بالا و پایین به صورت زیر به دست می‌آید:

TABASOORI (2010) نشان داد که زمان انجام کارهای موثر
باید و پایینی روابط بیشتری به دست آورد.

بنابراین برای این مثال و با شکل روابط پیش‌نمرای دلخواه، هیچ
جوابی نیست که مقدار حذف هن از 80 تا 85 کمتر باشد.

1990 بیشتری باید. بطور مثال اگر فرض کرد که به دست می‌آید
کارهای به ابستگانها به صورت زیر باشد:

(8, 9, 7, 2) (6, 4) (3) (2) (1)

در این صورت به چهار ابستگان موثر نیست و هزینه تجهیزات در
اری چهار ابستگان به ترتیب برای 0, 5, 100 و 150 و
مقدار مینیما 450 می‌باشد.

تخریب هزینه نیروی انسانی در ابستگان بر اساس متوسط وسیعی
باید برای 0, 5/4, 1/2, 1/3 و 1/4 می‌باشد که سپس از خراب
کردن آنها در زمان سیکل، مجموع کل هزینه نیروی انسانی برای
112/7 بیشتر می‌باشد. با احتساب وزن برای هزینه تجهیزات و
نیروی انسانی، مقدار حذف هر فرد برای 7/4 120/3 می‌باشد که بزرگتر
از حذف باید و کوچکتر از حد بالایی بیشتر از انتظار است.

رابطه (1) و (2) به ترتیب حذف پایین و حد بالایی که حذف هن از
می‌شود. در روابط فوق [X] [X]، نسخه کوچک‌ترین عدد صحیح بزرگتر
یا مساوی با X است. حذف پایین و بالا باید به هنگامی باشد که تحقیق
جهت نیاز به مقدار حذف هن از تا کمتر از حذف پایین و
یا اینکه رابطه بیشتری نسبت به این مطلب برای محاسبه حذف
بالا و پایین، در زمینه انتخاب شده است.

برای محاسبه حذف پایین فرض می‌شود که روابط بیشتری وجود
دارد. زیرا می‌شود این سه مثال را به دو مقدار بیشتری و حذف
به اهنگی مثال دیده باید به بررسی شده است. هن از تحقیق
تمام کارهایی که از نوع تجهیزات استفاده می‌کند به فیک ابستگان
تخصیص یاده‌ای خرید تجهیزات در کمترین مقدار ممکن قرار
گیرد.

در مورد هزینه نیروی انسانی تنها در صورتی که مجموعه
زمان کارهای اختصاص یافته به هنگام گزارش برای زمان سیکل
باید و کوچک‌ترین عدد صحیح بزرگتر از مقدار، هزینه نیروی انسانی در
کمترین مقدار ممکن قرار گیرد.

در این حالت زمان کارهایی که هزینه‌ها و تجهیزات برای
بیشترین مقدار تأخیر نیروی انسانی و هزینه تجهیزات از رابطه
یافته می‌شود.

بیشترین حالت برای چاپ زمانی اتفاق می‌افتد که روابط بیشتری و
زمان انجام کارا و زمان سیکل به هنگام باشد که به اینکه
یک از کارهای موثر در این‌ها استفاده جدایی‌انگیز تخصیص یاده‌ای. اگر
6. جدول ۳. اطلاعات مربوط به مثال هزینه نیروی انسانی

<table>
<thead>
<tr>
<th>شماره کار</th>
<th>شماره کار</th>
<th>شماره کار</th>
<th>شماره کار</th>
<th>شماره کار</th>
<th>شماره کار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>زمان انجام</td>
<td>زمان انجام</td>
<td>زمان انجام</td>
<td>زمان انجام</td>
<td>زمان انجام</td>
<td>زمان انجام</td>
</tr>
</tbody>
</table>
| ۱۰۰
مقدمه
چندین تحقیق در حال بررسی کردن داده‌های جمعیتی در زمینه‌های مختلف، از جمله جامعه‌شناسی، فرهنگ‌شناسی و اقتصاد، حاضر به درک بیشتر از رفتار و رفتارهای مختلف جمعیت‌ها می‌باشد. عمده مطالعات این بخش از جمعیت‌شناسی در زمینه تحقیقات جمعیتی بافت می‌گیرد که به روش‌های تحقیقاتی مختلف و در هر گونه بخش‌یابی از جمعیت، به بهتری درک و تغییرات جامعه‌ای را تبادل می‌نمایند. این تحقیقات در حوزه‌های مختلف عمومی و حوزه‌های مربوط به جامعه‌شناسی، اقتصاد و فرهنگ نیز گسترده می‌باشد.

1.1 تحقیق گروه‌زدایی و جامعه‌شناسی

تعداد گروه‌زدایی در جمعیت‌شناسی، به عنوان یکی از مهم‌ترین مباحث در این حوزه مطرح می‌شود. این مباحث در زمینه‌های مختلف از جمله فرهنگ‌شناسی، اقتصاد و جامعه‌شناسی، به تكوین و رویارویی از گروه‌های مختلف جمعیت اشاره می‌کند. این بافت در تحقیقات جمعیتی، به بهتری درک و تغییرات جامعه‌ای را تبادل می‌نمایند. این تحقیقات در حوزه‌های مختلف عمومی و حوزه‌های مربوط به جامعه‌شناسی، اقتصاد و فرهنگ نیز گسترده می‌باشد.

1.2 تحقیقات اقتصادی و جامعه‌شناسی

تحقیقات اقتصادی و جامعه‌شناسی، به عنوان یکی از مهم‌ترین مباحث در این حوزه مطرح می‌شود. این مباحث در زمینه‌های مختلف از جمله فرهنگ‌شناسی، اقتصاد و جامعه‌شناسی، به تكوین و رویارویی از گروه‌های مختلف جمعیت اشاره می‌کند. این بافت در تحقیقات جمعیتی، به بهتری درک و تغییرات جامعه‌ای را تبادل می‌نمایند. این تحقیقات در حوزه‌های مختلف عمومی و حوزه‌های مربوط به جامعه‌شناسی، اقتصاد و فرهنگ نیز گسترده می‌باشد.
چهار یا پنجم یا (Pm) از بنابراین مقدار یا پنجم یا (Re) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

در این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

برای تست کلیه بیش از چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]

از این چهار یا پنجم یا (Pm) از تعداد جامعه و (Gen) از انتخاب جامعه (PO) از تعداد جامعه مقدار یا پنجم یا (Pm) از تعداد جامعه

\[
\text{PMX} = \text{Gen} = \text{POP} = \text{PC} = \text{Pm} = 0.18
\]
انتخاب بهترین جواب، تابع هدف‌های توسعه می‌باشد. مدل این جدول توسط کیمی‌دانان برای شناسایی این تابع هدف ویژه محققان در دسترس قرار گرفته است. مدل این جدول در مورد سال‌های مختلف از این جدول توسط کیمی‌دانان برای شناسایی این تابع هدف ویژه محققان در دسترس قرار گرفته است.

جدول ۵. نتایج حاصل از محاسبات و مقایسه روش‌ها

| مدل | روش Lingo | RTA | لینگو افزار | مقدار
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
</tbody>
</table>

| مدل | تعداد زمان | تعداد کارها | مقدار
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
</tbody>
</table>

| مدل | مقدار
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lingo</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>۲۸۴۶</td>
</tr>
</tbody>
</table>

| مدل | تعداد زمان | تعداد کارها | مقدار
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزар</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با روش Lingo</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>با مدل Lingo افزار</td>
<td>۲۸۴۶</td>
<td>۲۸۴۶</td>
</tr>
</tbody>
</table>

| مدل | مقدار
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lingo</td>
<td>۲۸۴۶</td>
</tr>
<tr>
<td>RTA</td>
<td>۲۸۴۶</td>
</tr>
</tbody>
</table>
9. **Results**

In an exact method, a new algorithm is proposed to solve the cost-oriented assembly line balancing problem, which is a significant issue in the manufacturing industry. The proposed algorithm is based on the genetic algorithm, which is a well-known optimization technique. The algorithm is designed to minimize the cost of the assembly line by optimizing the sequence of operations and the allocation of workstations.

The results show that the proposed algorithm is effective in solving the cost-oriented assembly line balancing problem. The algorithm is compared with other existing methods, and it is found to be more efficient in terms of computational time and solution quality.

The results also show that the algorithm is capable of handling large-scale problems, which is a significant advantage over other methods. The algorithm is implemented in a software tool, which can be used by companies to optimize their assembly lines.

References

