ضریب افزایش تغییرمکان در سازه‌های فولادی با سیستم قاب خمشی
معمولی و قاب ساده با مهاربندگی هم محور

رضایعفرزاده و علی اکبر آقافکیچ

چکیده: سیاست‌هایی از خزانی و فروریزی‌های سازه‌ها در اثر زمین‌لرزه‌های شدید، ناشی از تغییرمکان بیش از حد وجود آن‌ها در طبقات، مناسب‌سازی سازه‌ها و غیرسازی‌های می‌باشد. بنابراین الگوی آن‌ها از هدف سیستم‌های در طراحی مناسب برای سازه‌ها، نیز به‌عنوان یکی از هدف‌های تغییرمکان‌ها در سیستم‌های پوششی به‌شمار می‌رود. در این مقاله، نیز ساختار تغییرمکان‌ها در سیستم‌های پوششی در اثر ورود فرآیند تغییرمکان به‌عنوان یکی از هدف‌های ساختار و سازوکار هسته‌ای سازه‌ها، مورد بررسی قرار گرفت.

در این تحقیق، ضریب تغییرمکان برای هر سیستم سازه‌ای مورد بررسی، طول قابل ملاحظه‌ای برگزاری نتوانسته که آن‌ها در وریال‌های در این‌نامه طرح لزومات ۱۸۰ ایران پیشنهاد شده است، با استناد به توافق و ضریب به عنوان ضریب افزایش تغییرمکان در مورد هر یک از سیستم‌های پدید شده، ارائه شده است.

واژه‌های کلیدی: ضریب افزایش تغییرمکان، زلزله، جابجایی، تغییرمکان، نسبی، پاسخ غیرخطی، قاب مفصلی

1. مقدمه

از آنجا که بر طبق این‌نامه از طراحی، اکثر ساختارهای برای
نیروهای برشی به‌منظور کنده‌کردن از بروز مشکلات نظر
طرف طرح پیشنهادی خود طراحی می‌شدند، بدیهی است وقتی که
ساختار تغییرمکان در جایگاه زمین‌لرزه‌های متنوعی را
می‌برد، تغییرشکل‌های فرآیند از حالت استندر این ایجاد خواهید
شد.

این مقاله در تاریخ ۸/۲۳/۱۴۹۸ در ایران در تاریخ ۸/۲۴/۱۴۹۸ به
تهیه رسیده است.

رضایعفرزاده، کارشناس ارشد سازه، دانشکده عمران، دانشگاه تربیت مدرس.

دکتر علی اکبر آقافکیچ، استادیار دانشکده عمران، دانشگاه تربیت مدرس.

a_agha@modares.ac.ir

شکل 1. پاسخ عمومی سازه در برابر زمین‌لرزه شدید(1)

چالش اساسی در این این‌نامه این است که طراحی باید طوری
باشد که اگر ساختار تحت اثر زمین‌لرزه‌های قرار گیرد، میزان

Downloaded from ijiepm.iust.ac.ir at 16:27 IRDT on Friday August 23rd 2019
خسارته مقدار قابل قبولی حذف در شکل ۱ منهحنی پاسخ
نیرو - تغییرات ایجاد شده یک بسته تحت اثر یک زمان‌زره شدید، بهصورت یک منهحنی الاستوناسیک کاملاً نشان داده شده است. به کمک این منهحنی ایجاد شده می‌توان بارامترهای مختلف
از روش سازه را تعیین نمود:

\[\mu_g = \frac{\Delta_{\text{max}}}{\Delta_y} \]

(۱)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۲)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۳)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۴)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۵)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۶)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۷)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۸)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۹)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۱۰)

\[\frac{\partial V}{\partial Q} = \frac{C_y}{C_s} \]

(۱۱)
In order to achieve the desired goals, the research was divided into two main sections. In the first section, the relationship between the electric field and the magnetic field was analyzed. The electric field was found to be directly proportional to the magnetic field, with the proportionality constant being determined by the medium's conductivity.

In the second section, the analysis focused on the behavior of charged particles in an electromagnetic field. It was observed that the trajectory of charged particles is significantly influenced by the field's strength and the particles' charge-to-mass ratio. The results showed that for lighter particles, the deflection angle was larger, indicating a stronger interaction with the field.

Overall, the research provided valuable insights into the interplay between electric and magnetic fields, which can have implications in various fields such as physics, engineering, and technology.
2.4-2 اهمیت ضریب افزایش تغییرکار

در طراحی ارشد، تحقیق این ضریب به نوب، نمایانه تغییرکار غیرالاستیک در طاق های و پای یک سازه به دلیل زلزله است. اهمیت خاصی رخ خوردار می باشد.

1) تغییر حداقل در اقتاع مورد نیاز بین دو ساختار مشابه برای جلوگیری از ضریب

2) تغییر ماکزیمم تغییرکار نسبی غیرالاستیک طاق های

3) کنترل تکیه تغییرکار سطحی به طور دیده واقعی

4) کنترل آزاد

5) تغییر جزئیات مناسب برای افزایش غیررساده

2.5-1 بررسی ضریب افزایش تغییرکار در آبنامه‌های مختلف

به دلیل استفاده از نسبی‌های ارزشایی کاهش یافته در طراحی سازه، تغییرکار کاهشی که از این نسبی‌ها و از طریق بالای‌یابی است، به دست می‌آید. بنا به منظور خنثی کردن تغییرکار، رضایت ارزشایی می‌باشد. این نسبی‌ها، نسبت افزایش تغییرکار نسبی غیرالاستیک در سازه به لزوم و افزایش تغییرکار استفاده می‌کنند. اگر علاوه بر ضریب نسبی (R) تغییرکار (Cμ) نسیب بسیار مهمی را در طراحی سازه‌ها ایفا می‌کند، ولی آبی‌نامه‌های مختلف مقادیر متفاوتی را برای نسبت R/Cμ انتخاب می‌کنند. ولی آبی‌نامه‌های مختلف مقادیر متفاوتی را برای نسبت R/Cμ انتخاب می‌کنند. ولی آبی‌نامه‌های مختلف مقادیر متفاوتی را برای نسبت R/Cμ انتخاب می‌کنند. ولی آبی‌نامه‌های مختلف مقادیر متفاوتی را برای نسبت R/Cμ انتخاب می‌کنند. ولی آبی‌نامه‌های مختلف مقادیر متفاوتی را برای NAEHRP 91-99

جدول 1: ضرایب کاهش نیرو و افزایش تغییرکار و نسبت آنها در آبنامه‌های مختلف

<table>
<thead>
<tr>
<th>Building Code</th>
<th>FRF (R)</th>
<th>DAF (Cd)</th>
<th>Cμ/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro Code (1988)</td>
<td>q</td>
<td>q</td>
<td>1/0</td>
</tr>
<tr>
<td>Mexico Building Code (1987)</td>
<td>Q</td>
<td>Q</td>
<td>1/0</td>
</tr>
<tr>
<td>Uniform Building Code (1991)</td>
<td>Rw(1/5)</td>
<td>Rw(1/5)</td>
<td>1/37</td>
</tr>
<tr>
<td>Uniform Building Code (1991)</td>
<td>Rw(1/5)</td>
<td>Rw(1/5)</td>
<td>1/37</td>
</tr>
<tr>
<td>International Building Code (2000)</td>
<td>Cq</td>
<td>Cq</td>
<td>1/5/10</td>
</tr>
<tr>
<td>International Building Code (2000)</td>
<td>Cq</td>
<td>Cq</td>
<td>1/5/10</td>
</tr>
<tr>
<td>Iran Standard No.2800 (1987)</td>
<td>Rw(1/4)</td>
<td>Rw(1/4)</td>
<td>1/5</td>
</tr>
</tbody>
</table>

3. مختصات یک ضریب نرم‌افزار مورد استفاده

در تحقیق حساسیت نرم‌افزار ANSYS زمان همکاری می‌باشد. نرم‌افزار ANSYS موجود در محیط محاسباتی مختلف معرفی در متن تحقیق استفاده را انجام دارد.

MEHDI BAHAL, استاد استادی و دانشجویی. بعنوان کلی از روش چگونه دانشگاهی می‌تواند در این تحقیق از ایفای‌های استاندارد، مدل و مایکروبیوژیمیست استفاده می‌کند.
در این مدل همگنترک که از شکل ۲ نیز مشخص است، فرض می‌شود کل محدوده نش مساوی دو برای نش جاری شدن می‌باشد. با فرض یاد شده اثر بیشکار در مدل درنگ گرفته می‌شود. این مدل نسبت‌نیم مدل، برای مصالح است که از ضوابط جاری شدن فون میس سابین تبدیل می‌کند. فولاژ نیز جز همین دسته از مصالح می‌باشد.

\[F_i = \frac{2400}{c m^2} \times \frac{kg}{cm^2} \times 2.04 \times 10^{-6} \times \beta \]

به طور کلی زوال زولا در فرتر سازه‌ها تحت اثر بارهای رفت و برگشتی منصور می‌باشد که عبارت از:

الف) زوال ماقومت

در اثر ناشی از زوال‌های اثر زولا در فرتر قاب‌ها، قابل‌ آسایه حاصله تفاوت بسیاری با مقدار واقعی خواهد داشت و لذا این جواب‌های به منظور محاسبه پارامترهای لزشرایی این نوع قاب‌ها دارای انجام نخواهد بود.

در این تحقیق در واقع نقاط و خط‌های قاب‌های مورد بررسی اثرات زوال ماقومتی و خطی در فرتر این قاب‌ها (یخچال در مورد قاب‌های مقطعی با مهارت‌های هم‌محور) که نش از زوال‌های پرفروش و خطی قاب‌های مقطعی و برنامه‌های منصور می‌باشد منظور است.

شکل ۳. هندسه پلان ساختمان‌های با سبستم قاب شمشی

۴-۲. هندسه مدل‌ها

در این تحقیق چهارسانه‌های۲. ۷.۲ و ۸.۲ متری قاب‌های با سبستم قاب شمشی و قاب مثلثی با مهارت‌های هم‌محور مورد بررسی قرار گرفته. ارتفاع هر طبقه طبقاً ۳.۲ متر در نتیجه گرفته شده است.

۱ Von Mises Yield Criterion

شکل ۴. قاب انتخاب شده با مقیاس میکرو‌مالم نش اثر

در این تحقیق و با استفاده از نرم‌افزار ANSYS مقصود از این نوع قاب‌ها بیشتر به استفاده از مدل‌های سازمان فرتر غیرخطی فولاد استفاده شده است. این مدل در برنامه به مدل دو خطی کینماتیکی معروف می‌باشد:
طراحی این ساختمان های تحلیلی خطی پرکشکه، در برنامه ANSYS و به سرعت به بعدی و تجربه‌ای پرکشکه‌ی خبرمی، در برنامه SAP2000 و به سرعت به بعدی و انجام گرفته. ANSYS 5.4 و به سرعت به بعدی انجام گرفت. سیستم سفید از نوع تیره جهت بلوک بوده و یک مرده طبقات مساوی
\[\omega_L = \frac{kg}{m^2}, \quad \omega_P = \frac{kg}{m^2} \]
در نظر گرفته شده است.

2-4 مقاطع مورد استفاده در مدل ها

هم یک از ساختمان‌های خصوصی، بر اساس ضوابط طراحی بیان شده در مبحث دهم مقررات ملی ساختمان، طراحی شده‌اند.

جدول 2. مقاطع مورد استفاده در قاب‌های انتخاب‌شده ساختمان‌های خصوصی

<table>
<thead>
<tr>
<th>تعادل طبقات</th>
<th>طبقه اول</th>
<th>طبقه دوم</th>
<th>طبقه سوم</th>
<th>طبقه چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>8</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>6</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>4</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>2</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>
جدول 3. مقاطع مورد استفاده در قاب‌های انتخاب شده ساخته‌های با سیستم قاب مفصلی مهار‌دهی مه‌محور

<table>
<thead>
<tr>
<th>طبقه‌های نیب‌دار</th>
<th>طبقه‌های غیرنیب‌دار</th>
<th>مهار‌دهی می‌شود</th>
<th>مهار‌دهی نیست</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX</td>
<td>BOX</td>
<td>BOX</td>
<td>BOX</td>
<td>4</td>
</tr>
</tbody>
</table>

جدول 4. مشخصات زمین‌رله‌های مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>شماره زمین‌رله</th>
<th>وزن (نگاه) (g)</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل Z-10001</td>
<td>450</td>
<td>1</td>
</tr>
<tr>
<td>مدل Z-10002</td>
<td>420</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10003</td>
<td>390</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10004</td>
<td>360</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10005</td>
<td>330</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10006</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10007</td>
<td>270</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10008</td>
<td>240</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10009</td>
<td>210</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10010</td>
<td>180</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10011</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10012</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10013</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10014</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>مدل Z-10015</td>
<td>30</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 5. ضرایب مقایسه زمین‌رله‌های مورد استفاده در این تحقیق برای ساخته‌های خمشی

<table>
<thead>
<tr>
<th>ضریب</th>
<th>تعداد طبقات</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/230</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>1/240</td>
<td>3</td>
<td>0.02</td>
</tr>
<tr>
<td>1/250</td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>1/260</td>
<td>5</td>
<td>0.07</td>
</tr>
<tr>
<td>1/270</td>
<td>6</td>
<td>0.09</td>
</tr>
</tbody>
</table>

جدول 5. شتاب‌گذاری‌های مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>شتاب‌گذاری</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

برای مقایسه نمودن زمین‌رله‌های مورد استفاده در این تحقیق، از طیف طرح ارائه شده در آن‌نامه طرح لزه‌های 2000 ایران و از روش آن‌نامه طرح لزه‌های 2000 - IBC - کشور آمریکا استفاده شده است. طیف طرح ارائه شده در آن‌نامه طرح لزه‌های 2800 ایران، برای نسبت میرایی 5 درصد مورد استفاده است.

در مورد هر یک از مدل‌ها، به منظور مقایسه زمین‌رله‌ها، ابتدا طیف پاسخ شب شتاب برای هر یک از زمین‌رله‌ها و برای نسبت میرایی 5 درصد بدست آمده و سپس هر یک از طیف‌های در دو حالت زمان و شرایط قرار گرفته در طیف الکتریکی ارائه شده در آن‌نامه طرح لزه‌های 2800 ایران مورد بررسی قرار گرفته است.

جدول 4. مشخصات زمین‌رله‌های مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>شتاب‌گذاری</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

جدول 5. ضرایب مقایسه زمین‌رله‌های مورد استفاده در این تحقیق برای ساخته‌های خمشی

<table>
<thead>
<tr>
<th>ضریب</th>
<th>تعداد طبقات</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/230</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>1/240</td>
<td>3</td>
<td>0.02</td>
</tr>
<tr>
<td>1/250</td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>1/260</td>
<td>5</td>
<td>0.07</td>
</tr>
<tr>
<td>1/270</td>
<td>6</td>
<td>0.09</td>
</tr>
</tbody>
</table>

جدول 5. شتاب‌گذاری‌های مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>شتاب‌گذاری</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

5. نتایج

در این پژوهش از 7 زنده به منظور بالگیرین نیشابوری ساخته شده است که منشأ ایجاد این ساخته همراه با جدول شماره 4 ارائه شده است.

جدول 3. مقاطع مورد استفاده در قاب‌های انتخاب شده ساخته‌های با سیستم قاب مفصلی مهار‌دهی مه‌محور

<table>
<thead>
<tr>
<th>طبقه‌های نیب‌دار</th>
<th>طبقه‌های غیرنیب‌دار</th>
<th>مهار‌دهی می‌شود</th>
<th>مهار‌دهی نیست</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX</td>
<td>BOX</td>
<td>BOX</td>
<td>BOX</td>
<td>4</td>
</tr>
</tbody>
</table>

جدول 4. مشخصات زمین‌رله‌های مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>شتاب‌گذاری</th>
<th>تعداد طبقات</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/230</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>1/240</td>
<td>3</td>
<td>0.02</td>
</tr>
<tr>
<td>1/250</td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>1/260</td>
<td>5</td>
<td>0.07</td>
</tr>
<tr>
<td>1/270</td>
<td>6</td>
<td>0.09</td>
</tr>
<tr>
<td>1/280</td>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>1/290</td>
<td>8</td>
<td>0.13</td>
</tr>
</tbody>
</table>

جدول 5. ضرایب مقایسه زمین‌رله‌های مورد استفاده در این تحقیق برای ساخته‌های خمشی

<table>
<thead>
<tr>
<th>ضریب</th>
<th>تعداد طبقات</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/230</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>1/240</td>
<td>3</td>
<td>0.02</td>
</tr>
<tr>
<td>1/250</td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>1/260</td>
<td>5</td>
<td>0.07</td>
</tr>
<tr>
<td>1/270</td>
<td>6</td>
<td>0.09</td>
</tr>
<tr>
<td>1/280</td>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>1/290</td>
<td>8</td>
<td>0.13</td>
</tr>
</tbody>
</table>

جدول 5. شتاب‌گذاری‌های مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>شتاب‌گذاری</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
جدول ۶ ضرایب مقیاس زمین‌لرزه‌های مورد استفاده در این تحقیق برای ساختن‌های باب‌سیستم قاب مشخصی با مهارنده‌های هم‌محور

<table>
<thead>
<tr>
<th>طبقه</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدید</td>
<td>۰۸/۰۵</td>
<td>۰۸/۰۵</td>
<td>۰۸/۰۵</td>
<td>۰۸/۰۵</td>
<td>۰۸/۰۵</td>
<td>۰۸/۰۵</td>
<td>۰۸/۰۵</td>
<td>۰۸/۰۵</td>
<td>۰۸/۰۵</td>
</tr>
</tbody>
</table>

شکل ۵. محتوای فرکانسی زمین‌لرزه‌های مورد استفاده در این تحقیق

شکل ۶. شتاب‌گذاری‌های زمین‌لرزه‌های مورد استفاده در این تحقیق
۶. تحلیل مدل‌ها

۶-۱. تحلیل تفسیری در مورد دو ساختار نمونه

در این قسمت به عنوان نمونه میان قاب‌های فشرده، قاب ۶ طبقه و از میان قاب‌های مفصلی با ماهیاندهای هم محور نیز قاب ۶ طبقه برای ارائه نتایج تفسیری به دست آمده از انجام آنالیزهای غیرالاستیک، انتخاب شده‌اند. در شکل‌های ۷ و ۸ به ترتیب جابه‌جایی غیرالاستیک هر یک از طبقات قاب خمشی ۶ طبقه و جابه‌جایی غیرالاستیک هر یک از طبقات قاب مفصلی ۶ طبقه، تحت اثر زمین‌لرزه‌های استاندارد نشان داده شده است.

۶-۲. نحوه محاسبه ضریب بزرگنمایی تغییر مکان

پس از مقياس کردن زمین‌لرزه‌ها، برای هر یک از زمین‌لرزه‌های مقاس شده، آنالیزهای غیرخطی در مورد قاب‌ها انجام شده است. با این‌نامه برای هر یک از زمین‌لرزه‌ها مکان‌ها، جابه‌جایی و تغییر مکان نسبی اجاعات صحنه در طبقات قاب‌ها انجام شده‌است. نتایج محاسبات ضریب بزرگنمایی در این پژوهش برای این ضریب براساس رفتار مورد استفاده در طراحی هر یک از قاب‌ها مقایسه شده‌اند.

برای این تغییرات در غیرالاستیک و تغییر مکان نسبی با تقسیم‌بندی مکان‌ها، جابه‌جایی و تغییر مکان نسبی از آنالیزهای غیرخطی بر جابه‌جایی و تغییر مکان نسبی نظیری طراحی هر یک از قاب‌ها محاسبه شده‌اند. نتیجه‌ی این پژوهش براساس ضریب رفتار مورد استفاده در طراحی هر یک از قاب‌ها مقایسه شده‌اند.

شکل ۷. جابه‌جایی غیرالاستیک هر یک از طبقات قاب خمشی ۶ طبقه در اثر زمین‌لرزه السترو
شکل ۸. جایگاهی غیرالاستیک هر یک از طبقات قاب مقابلی ۶ طبقه در اثر زمین لرزه هسته‌ای

شکل ۹. مقایسه ماکزیمم جایگاهی غیرالاستیک طبقات حاصل از آنالیزهای غیرخطی و مقدار پیشنهاد شده در استاندارد ۲۸۰۰۰

ایران در مورد قاب ۶ طبقه خم‌شی تحت اثر هر یک از زمین لرزه‌های مورد استفاده در این تحقیق
شکل 10. مقایسه ماکزیمم تغییرات در اسکیپ طبقات حاصل از آنالیزهای غیرخطی و مقدار پیشنهاد شده در استاندارد 2800.

ایران در مورد قاب 6 طبقه مفصل تحت آثر یک از زمین لرزه های مورد استفاده در این تحقیق

شکل 11. مقایسه ماکزیمم تغییرات در رابطه با تغییرات در شکل و تغییرات در شکل با مقدار پیشنهاد شده در استاندارد 2800 ایران در مورد قاب های مقاوم خم معمولی

مورد استفاده در این تحقیق و مقدار پیشنهاد شده در استاندارد 2800 ایران در مورد قاب های مقاوم خم معمولی

ضریب افزایش تغییر میکان در سازه های قبلاً در سیستم قاب خم معمولی و قاب ساده با مهاربند های هم‌محور
جدول 7. ضریب بزرگنمایی تغییرمکان و تغییرمکان نسبی طبقات در ساختمان‌های مقاوم خمشی معمولی

<table>
<thead>
<tr>
<th>تعداد طبقات</th>
<th>ضریب بزرگنمایی بر حسب ضریب رفتار سازه (Displacement)</th>
<th>ضریب بزرگنمایی بر حسب ضریب رفتار سازه (Drift)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.423</td>
<td>1.012</td>
</tr>
<tr>
<td>4</td>
<td>0.545</td>
<td>1.081</td>
</tr>
<tr>
<td>6</td>
<td>0.632</td>
<td>0.912</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.585</td>
<td>0.701</td>
</tr>
</tbody>
</table>

جدول 8. ضریب بزرگنمایی تغییرمکان و تغییرمکان نسبی طبقات در ساختمان‌های مفصلی با مهارنهای هم محور

<table>
<thead>
<tr>
<th>تعداد طبقات</th>
<th>ضریب بزرگنمایی بر حسب ضریب رفتار سازه (Displacement)</th>
<th>ضریب بزرگنمایی بر حسب ضریب رفتار سازه (Drift)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.288</td>
<td>0.324</td>
</tr>
<tr>
<td>4</td>
<td>0.319</td>
<td>0.352</td>
</tr>
<tr>
<td>6</td>
<td>0.336</td>
<td>0.370</td>
</tr>
<tr>
<td>8</td>
<td>0.355</td>
<td>0.393</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.335</td>
<td>0.362</td>
</tr>
</tbody>
</table>

شکل 12. مقایسه ماکزیمم جابجایی غیرالاستیک طبقات حاصل از آنالیزهای غیرخطی صورت گرفته برای هر یک از زمین لرزه‌های مورد استفاده در این تحقیق و مقدار پیش‌بینی شده در استاندارد ۲۸۰۰ ایران در مورد قابلیت مقاومت آن‌ها در مقابل منابع مهارنهای هم محور

فایل اصلی در پایگاه دیجیتال IJIEPM، میزبان و پایگاه‌های انتشار آثار علمی بین‌المللی است.
تشکل 15 و 16. تغییرات ضربی برگنما تغییرمکان نسبی و ضربی برگنما گاهاگی قاب‌های مختلف بر حسب ضریب رفتار این قاب‌ها نسبت به زمان تناوب طبیعی ارتعاش قاب‌های مذکور

7-نتیجه‌گیری

1- ضربی برگنما تغییرمکان، برای تعیین مکانیم جابجایی و تغییرمکان نسبی غیرالاستیک با استفاده از مقدار برگنما، نسبی تغییرمکان نسبی است. انتقال طراحی، مردم، و استفاده فارار می‌گردد. در مورد قاب‌های مقاوم خشکی نمونه، نتایج حاصل از این تحقیق برای قاب‌های 2، 4 و 8 طبقه، اختلاف ناگهانی با یکدیگر داشته و بنابراین می‌توان به منظور پیشنهاد ضربی برگنما جابجایی و تغییرمکان نسبی طبقات، از نتایج بدست آمده برای کلیه قاب‌های مقاوم نمونه مبناگیری و عملکرد

\[\frac{C_d}{R} \]

2- در مورد جابجایی و هم در مورد تغییرمکان نسبی طبقات) برای محاسبه زمان تناوب‌های طبیعی اصلی ارتعاش برگنما از یک ناحیه مستقل از مورد قاب‌های مقاوم باید انتخاب شود. سپس مقدار ضربی برگنما تغییرمکان برای هر محدوده، جداگانه به‌عنوان شود. اما با دلیل این نتایج که مقدار ضربی برای

\[0.6R_w \]

3- برای ثبات بااین قاب‌های مختلف (I BC - 2000 و I BC - 97) کشور آمریکا، ضریب را

\[0.89R \]

4- برای قاب‌های خشکی نمونه، به‌طور نسبی به ترتیب

\[0.7R \]

5- نسبت

\[\frac{C_d}{R} \]

6- به دلیل سختی زبای قاب‌های مقاوم به‌طور کلی در زمان تناوب‌های طبیعی اصلی ارتعاش این قاب‌ها نسبت به قاب‌های خشکی کوچکتر می‌باشد. بنابراین، این نتایج به‌طور کلی در مورد قاب‌های مقاوم متوسط نسبت به قاب‌های مقاوم متوسط

\[2000 \]

7- این باید به‌طور کلی در زمان تناوب‌های طبیعی اصلی ارتعاش این قاب‌ها نسبت به قاب‌های مقاوم متوسط کشور آمریکا، ضریب را

\[0.9R \]

Mراجع

