توسعه مدل بیشینه‌های کل توزیع لجستیک در شرایط یک تولیدکننده

حسن غنیفرتی و سید محمد سید حسینی

چکیده: مهم‌ترین درون‌کاری توزیع به مدیریت سیستم ارتباطات پیچیده دارد که در واقع این ارتباط تهیه‌کنندگان، مدل توزیع بین عوامل لجستیک، می‌باشد که به مکان‌سنجی موارد اولیه به مراکز تولیدی تأثیر می‌دهد. بنابراین، در این مقاله مدل بیشینه توزیع لجستیک در شرایط وجود یک تولیدکننده و جدید انتباخ توزیع توسعه داده شده است. در این مقاله با توجه به معرفی گرفتن مسیر و سیله حمل حجم و سیله حمل و همچنین سایر هزینه‌های حمل پهربین مقدار برای حمل از مسیر و سیله مورد نظر بیشتر به سمت این محدودیت‌ها از پیوند توزیع و تعداد انتباخ توزیع حجم سیله حمل در نظر گرفته شده است. مثالی در این مکان جمعیت حالت که با تغییر هزینه‌ها می‌تواند از ایجاد پهربین جواب و برسی نتایج به عمل آمد انتباخ ساخته شود.

واژه‌های کلیدی: زنجیره تامین، لجستیک، انتباخ، توزیع

1. مقدمه

لجستیک عملاً بر برتری‌های تحمل و کنترل به مبنا رساندن مواد اولیه به مراکز تولیدی تأثیر می‌دهد. بنابراین، در این مقاله مدل حجم و سیله حمل و همچنین سایر هزینه‌های حمل پهربین مقدار برای حمل از مسیر و سیله مورد نظر بیشتر به سمت این محدودیت‌ها از پیوند توزیع و تعداد انتباخ توزیع حجم سیله حمل در نظر گرفته شده است. مثالی در این مکان جمعیت حالت که با تغییر هزینه‌ها می‌تواند از ایجاد پهربین جواب و برسی نتایج به عمل آمد انتباخ ساخته شود.

2. مورور ادبیات

کاربرد اولین تهیه‌کننده است که جهت تغییر وسیله حمل در یک پک بارز تا تحقیق این مقاله با توجه به این مقاله گزارش کرده است. 5

ارائه مقاله در تاریخ 23/22/2013 و در تاریخ 25/25/2013 با توجه به این رسویده است.

حسن غنیفرتی، دانشگاه علوم تربیتی و دانشگاه علوم کاربردی-vathi@yhu.ac.ir

سید محمد سید حسینی، استاد دانشکده مهندسی صنایع، دانشگاه و استاد دانشگاه علوم کاربردی

مراجع:

[1] Economic Transportation Quantity

sayed.hoseini@yahoo.com

scie1344@yhu.ac.ir
ستمکه اصلی این طریق در شیب تولید و توزیع بوسیله بین تأمین و تفاها در محل خروجی سیستم و در اقتصادی ترین روش است.

[1] هدف این مدل تعیین بهترین استراتژی توزیع که مجموع هزینه‌های نگهداری و سفارش موجودی را حداقل می‌کند می‌باشد.

توسعه مدل بهینه‌ی هزینه‌ی کل توزیع لجستیک در شرایط یک پایدارکنده و چند انتاری توزیع در مدیریت زنجیره‌ی تأمین (SCM)

این فرض به این معنی است که هیچ‌گونه محدودیت‌ی بر ارسال کالا از انتاری به هر خرده فروش نتوانسته‌باشد.

۱- طبق فرض انتاریا قابل تعیین می‌باشد.

این موضوع از انتاریا همیشه دارد در صورتیکه بتوانید طرفین انتاری را تعیین کنید بر اساس تقاضای هر یک از خرده فروش همیشه توانایی تعیین کنید که به تعداد انتاری نیاز دارید.

۲- تعريف هزینه حمل

هزینه حمل به اساس وسیله حمل تعیین خواهد شد. این فرض به شکل ۱ در زمینه‌ی تحویل انتاریا با یک یک انتاری به هر خرده فروش مورد استفاده قرار گرفته خواهد شد.

۳- ساخت مدل تهیه توزیع لجستیک

با توجه به پویاگرایی انتاریا در زمینه‌ی ساخت مدل توزیع لجستیک در زمینه‌ی انتاریا به‌ویژه در صورتیکه بتوانید طرفین انتاریا را تعیین کنید بر اساس تقاضای هر یک از خرده فروش همیشه توانایی تعیین کنید که به تعداد انتاری نیاز دارید.

۱. محدودیت تعداد انتاری: از انجاییکه سرمایه‌گذاری برای ایجاد انتاریا مورد است که می‌باشد و مکان‌هایی آتلانتیک بیشتر انتاریا می‌باشد و همین لحاظ موضوع انتخاب از نظر محل‌های کاندید شده مطرح خواهد شد که در این زمینه یک صورت مصرف و یک (Z) تعیین خواهد که بر اساس میانگین آن یک صورت در انتاریا باید داشته باشد از این صورت می‌باشد.

۲. محدودیت طرفین انتاری: با توجه به اینکه برای هر یک از انتاریا در نظر گرفته شده است و یک از محصولات تیزی به طرفین انتاریا به شکل مورد ذکر در این مقاله با توجه به تعداد انتاریا با کمتر استفاده شد طرفین انتاریا در این مقاله در نظر گرفته شده است.

۳. محدودیت ارسال خرده فروش به هر یک از انتاریا که می‌توانید میزان محصولات ارسالی برای هر یک از انتاریا جایگزینی نیاز خرده فروشان از این محصولات باشد.

\[\text{TC} = \sum \min \{ \sum_{i} x_{ij}, \sum_{j} x_{ij} \} \leq W \]

\[\sum_{i} x_{ij} \leq G Z, \sum_{j} x_{ij} \leq G Z \]

\[Y_{ij} \leq X_{ij} \leq Y_{ij} \]

\[S_{ij} X_{ij} \leq V_{m}, X_{ij} \geq 0, Z_{ij} \in \{0, 1\} \]

با توجه به پویاگرایی انتاریا در زمینه‌ی ساخت مدل توزیع لجستیک در زمینه‌ی انتاریا به‌ویژه در صورتیکه بتوانید طرفین انتاریا را تعیین کنید بر اساس تقاضای هر یک از خرده فروش همیشه توانایی تعیین کنید که به تعداد انتاری نیاز دارید.

۱. محدودیت تعداد انتاری: از انجاییکه سرمایه‌گذاری برای ایجاد انتاریا مورد است که می‌باشد و مکان‌هایی آتلانتیک بیشتر انتاریا می‌باشد و همین لحاظ موضوع انتخاب از نظر محل‌های کاندید شده مطرح خواهد شد که در این زمینه یک صورت مصرف و یک (Z) تعیین خواهد که بر اساس میانگین آن یک صورت در انتاریا باید داشته باشد از این صورت می‌باشد.

۲. محدودیت طرفین انتاری: با توجه به اینکه برای هر یک از انتاریا در نظر گرفته شده است و یک از محصولات تیزی به طرفین انتاریا به شکل مورد ذکر در این مقاله با توجه به تعداد انتاریا با کمتر استفاده شد طرفین انتاریا در این مقاله در نظر گرفته شده است.

۳. محدودیت ارسال خرده فروش به هر یک از انتاریا که می‌توانید میزان محصولات ارسالی برای هر یک از انتاریا جایگزینی نیاز خرده فروشان از این محصولات باشد.

\[\text{TC} = \sum \min \{ \sum_{i} x_{ij}, \sum_{j} x_{ij} \} \leq W \]

\[\sum_{i} x_{ij} \leq G Z, \sum_{j} x_{ij} \leq G Z \]

\[Y_{ij} \leq X_{ij} \leq Y_{ij} \]

\[S_{ij} X_{ij} \leq V_{m}, X_{ij} \geq 0, Z_{ij} \in \{0, 1\} \]

با توجه به پویاگرایی انتاریا در زمینه‌ی ساخت مدل توزیع لجستیک در زمینه‌ی انتاریا به‌ویژه در صورتیکه بتوانید طرفین انتاریا را تعیین کنید بر اساس تقاضای هر یک از خرده فروش همیشه توانایی تعیین کنید که به تعداد انتاری نیاز دارید.

۱. محدودیت تعداد انتاری: از انجاییکه سرمایه‌گذاری برای ایجاد انتاریا مورد است که می‌باشد و مکان‌هایی آتلانتیک بیشتر انتاریا می‌باشد و همین لحاظ موضوع انتخاب از نظر محل‌های کاندید شده مطرح خواهد شد که در این زمینه یک صورت مصرف و یک (Z) تعیین خواهد که بر اساس میانگین آن یک صورت در انتاریا باید داشته باشد از این صورت می‌باشد.

۲. محدودیت طرفین انتاری: با توجه به اینکه برای هر یک از انتاریا در نظر گرفته شده است و یک از محصولات تیزی به طرفین انتاریا به شکل مورد ذکر در این مقاله با توجه به تعداد انتاریا با کمتر استفاده شد طرفین انتاریا در این مقاله در نظر گرفته شده است.

۳. محدودیت ارسال خرده فروش به هر یک از انتاریا که می‌توانید میزان محصولات ارسالی برای هر یک از انتاریا جایگزینی نیاز خرده فروشان از این محصولات باشد.

\[\text{TC} = \sum \min \{ \sum_{i} x_{ij}, \sum_{j} x_{ij} \} \leq W \]

\[\sum_{i} x_{ij} \leq G Z, \sum_{j} x_{ij} \leq G Z \]

\[Y_{ij} \leq X_{ij} \leq Y_{ij} \]

\[S_{ij} X_{ij} \leq V_{m}, X_{ij} \geq 0, Z_{ij} \in \{0, 1\} \]
4. مثال

اگر یک کارخانه با ۳ محل انتقال به صورت کلاسیک در نظر گرفته و بخواهیم حداکثر ۳ انتبار و ۳ خرده فروش کالاهای خود را در اختیار قرار دهیم، خواهیم داشت.

\[
(Y_{ij}(K); (Y)_{ij}(K))
\]

جدول ۱. حجم نیاز خرده فروش بر حسب انتبار و محصول \(i\)

<table>
<thead>
<tr>
<th>محل انتبار</th>
</tr>
</thead>
<tbody>
<tr>
<td>محصول</td>
</tr>
<tr>
<td>نیاز خرده فروش</td>
</tr>
<tr>
<td>انتبار ۱</td>
</tr>
<tr>
<td>انتبار ۲</td>
</tr>
<tr>
<td>انتبار ۳</td>
</tr>
<tr>
<td>(J_1)</td>
</tr>
<tr>
<td>(J_2)</td>
</tr>
<tr>
<td>(J_3)</td>
</tr>
</tbody>
</table>

جدول ۲. مجموع حجم نیاز خرده فروش بر حسب انتبار و محصول \(i\)

\[
\sum_{i=1}^{6} +6x_{123} +7x_{132} +13x_{231} +6x_{232} +11x_{321} +7x_{332} +18x_{211} +7x_{212} +5x_{221} +6x_{222} +17x_{231} +11x_{232} +14x_{212} +6x_{222} +11x_{322} +15x_{322} +11x_{321} +7x_{322} +3x_{321} +2x_{322} +7x_{313} +8x_{323} +4x_{311} +7x_{312} +9x_{311} +2x_{312} +11x_{311} +4x_{312} +12x_{312} +11x_{312} +5x_{321} +5x_{322} +4x_{321} +5x_{322} +4x_{321} +5x_{331} +5x_{332} +6x_{331} +11x_{332}
\]

\[
ST: z_1 + z_2 + z_3 + z_4 + z_5 + z_6 \leq 3
\]

در مورد حجم وسیله نقلیه با توجه به اینکه می‌باشد برای هر مسیر یک وسیله اختصاص یابد به همین دلیل نیاز هر انتبار بین دو مسیر بطور مساوی تقسیم می‌گردد و به این صورت تعیین می‌گردد. همچنین نیز ۱ فرض می‌شود با توجه به اطلاعات اولیه مدل مسئله بشرح زیر ارائه می‌گردد.

\[
M_{ac} = 100z_1 + 200z_2 + 300z_3 + 400z_4 + 200z_5 + 100z_6 + 4x_{111} + 6x_{112} + 7x_{211} + 2x_{212} + 5x_{211} + 7x_{212} + 3x_{121} + 4x_{122} + 7x_{121} + 5x_{122} + 8x_{121} + 13x_{122}
\]
جدول ۲. هزینه حمل و نقل و نگهداری از اتی بای ۱ محسوس ز و مسیر و سیمه

<table>
<thead>
<tr>
<th>مسیر</th>
<th>اتی بای ۱</th>
<th>اتی بای ۲</th>
<th>اتی بای ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>محصول</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J₁ J₂ J₃</td>
<td>J₁ J₂ J₃</td>
<td>J₁ J₂ J₃</td>
</tr>
<tr>
<td>J₁</td>
<td>m₁ m₂ m₃</td>
<td>m₁ m₂ m₃</td>
<td>m₁ m₂ m₃</td>
</tr>
<tr>
<td>J₂</td>
<td>m₁ m₂ m₃</td>
<td>m₁ m₂ m₃</td>
<td>m₁ m₂ m₃</td>
</tr>
<tr>
<td>J₃</td>
<td>m₁ m₂ m₃</td>
<td>m₁ m₂ m₃</td>
<td>m₁ m₂ m₃</td>
</tr>
</tbody>
</table>

جدول ۳. جدول ضرایب اتی بای ۱

<table>
<thead>
<tr>
<th>اتی بای</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضرایب</td>
<td>۱۰۰</td>
<td>۱۵۰</td>
<td>۲۰۰</td>
</tr>
</tbody>
</table>

توضیح: مساحت همه اقلام مساوی است

جدول ۴. هزینه نگهداری

<table>
<thead>
<tr>
<th>اتی بای</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>محصول</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
</tr>
</tbody>
</table>
جدول ۶: جوابهای مسئله توزیع

<table>
<thead>
<tr>
<th>انبار ۱</th>
<th>انبار ۲</th>
<th>انبار ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>مالک</td>
<td>محصول ۱</td>
<td>محصول ۲</td>
</tr>
<tr>
<td>۱</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۲</td>
<td>-</td>
<td>۱۵</td>
</tr>
<tr>
<td>۳</td>
<td>۱۵</td>
<td>-</td>
</tr>
<tr>
<td>۴</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۵</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

به منظور تعيين پهپاریتی سیاست‌های دستیاری هزینه کل را داشته باشید.

۱- هزینه ایجاد (ر ابزار) هر انبار.
۲- هزینه حمل و نقل بین انبار و کارخانه.
۳- هزینه موجودی در راه.
۴- هزینه تهیه‌افزار در انبار.
۵- طوفان و سیلیه.

چک که با تغییر مقادیر هر کدام از موارد بالا می‌توان نسبت به تغییر هزینه
کل اقدام نمود.

۶- تحقیق‌گری

با توجه به مدل‌های شده در این فصل بخش دیگری از فعالیت‌های تجسیم شامل توزیع محصولات و ارائه آنها به انبار جهت خرده
فروش در این سیستم را درست کرده‌اند.

همچنین در این مدل دو مرحله و سیستم طوفانی توزیع، صورت گرفته و
به عمل می‌یابد. با توجه به مساحت هر می‌توان در مورد
طوفان انبارها تصمیم‌گیری به عمل آورد.

۷- تحقیقات آنی

۱- در مدل ارائه شده نیاز خریدرهای فروش محصولات نسبت فرض شده است
که به دنبال نظر گرفتن آن به صورت احتمالی با یافته می‌توان این مدل را
توسعه داد.
۲- در این مدل توزیع دو سطح کارخانه و انبار توزیع در کارخانه
تغییر نشده و منظور توصیف این مدل می‌توان سطوح توزیع را به
تعداد بیشتری نیز در مسیر گرفت.

منابع
Melbourne,1993.